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Abstract

Ductal carcinoma in situ (DCIS) is a pre-invasive carcinoma of the breast that exhibits several distinct morphologies but the
link between morphology and patient outcome is not clear. We hypothesize that different mechanisms of growth may still
result in similar 2D morphologies, which may look different in 3D. To elucidate the connection between growth and 3D
morphology, we reconstruct the 3D architecture of cribriform DCIS from resected patient material. We produce a fully
automated algorithm that aligns, segments, and reconstructs 3D architectures from microscopy images of 2D serial sections
from human specimens. The alignment algorithm is based on normalized cross correlation, the segmentation algorithm
uses histogram equilization, Otsu’s thresholding, and morphology techniques to segment the duct and cribra. The
reconstruction method combines these images in 3D. We show that two distinct 3D architectures are indeed found in
samples whose 2D histological sections are similarly identified as cribriform DCIS. These differences in architecture support
the hypothesis that luminal spaces may form due to different mechanisms, either isolated cell death or merging fronds,
leading to the different architectures. We find that out of 15 samples, 6 were found to have ‘bubble-like’ cribra, 6 were
found to have ‘tube-like’ criba and 3 were ‘unknown.’ We propose that the 3D architectures found, ‘bubbles’ and ‘tubes’,
account for some of the heterogeneity of the disease and may be prognostic indicators of different patient outcomes.

Citation: Norton K-A, Namazi S, Barnard N, Fujibayashi M, Bhanot G, et al. (2012) Automated Reconstruction Algorithm for Identification of 3D Architectures of
Cribriform Ductal Carcinoma In Situ. PLoS ONE 7(9): e44011. doi:10.1371/journal.pone.0044011

Editor: Paul van Diest, University Medical Centre Utrecht, The Netherlands

Received March 20, 2012; Accepted July 27, 2012; Published September 6, 2012

Copyright: � 2012 Norton et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was funded in part by the Hosei International Fund Foreign Scholars Fellowship. SG was supported by grants from the National Institutes
of Health and the New Jersey Commission on Cancer Research. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: knorton4@jhmi.edu

Introduction

Ductal carcinoma in situ (DCIS) is classified and graded by

pathologists using 2-dimensional (2D) histological cross-sections of

biopsy specimens. Unfortunately, actual correlations between 2D

morphology and patient outcome are not strong [1,2]. In a study

that compared multiple specimens within a duct and multiple

ducts within patients with DCIS, it was found that patients with

DCIS exhibit significant heterogeneity [3]. Alongside this state of

affairs, experimental [4,5] and theoretical [6] studies have

reported that growth patterns of breast tissue differ significantly

in 2D and in 3D. Extensive in vitro analyses in particular have

demonstrated that cancer growth behaviors [7–9] and architec-

tures [10–13] are qualitatively different in 2D and 3D, and several

computational models of DCIS have consequently been developed

to investigate both 2D and 3D characteristics of DCIS develop-

ment [14–20].

3D reconstruction techniques have been used in many

biological systems, ranging from ascidian morphogenesis to virtual

colonoscopy to facial reconstruction [21–24]. An early review of

3D techniques used to study 3D organization and structure of

DCIS appears in [25], and a particularly germane investigation

examining the 3D ductal structure of a normal breast can be found

in [26]. In addition, other imaging techniques have been useful for

studying architecture and prognosis in prostate [27,28], colorectal

[29], and ductal carcinoma in situ (DCIS) tissues [30]. These

studies of DCIS provide a compelling case that 3D reconstructions

are capable of advancing the understanding of the structure of

cancers in general, and DCIS in particular. 3D reconstructions of

DCIS have nevertheless been limited to date [26,31–34], and

focus (1) on measuring the extent of the disease through the

mammary system at comparatively low resolution (i.e. down to

about 1 mm), or (2) on identifying sites of origin of DCIS.

Studies of the extent of DCIS include the use of a system for

morphological and molecular analysis of thick tissue, for which

DCIS is one particular example [35]. Additionally, x-ray

computed tomography (CT) has been used as a tool to visualize
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DCIS, with attention given to areas of micro-calcification that can

be well identified using this technique [36]. Calcifications in a

high-grade specimen of DCIS have been identified [37],

supporting the conclusion that DCIS was continuous through

the duct [37], as proposed also in earlier research [32]. Other

studies have examined the distribution of DCIS, but only in cases

with infiltrating carcinoma (IC), leading to the finding that DCIS

spreads in a fan-like geometry [38].

3D studies of DCIS focusing on identifying sites of origin

include work using a quantitative subgross method to examine

DCIS specimens [34]. Wellings et al. reported that DCIS in the 60

specimens tested originated most frequently in terminal or lobule

units [34]. Another study used reconstructions to determine that

there is a relationship between the presence of carcinoma in

papillomas and the origin of the carcinomas [33]. 3D reconstruc-

tions of DCIS from biopsy specimens have also been used to

identify the outer margins of the disease, which is of manifest

importance for excisions [39].

Notwithstanding these important studies, analysis of potential

differences between 2D and 3D morphologies of DCIS at the

micro-scale (down to microns) that we focus on here do not appear

in the literature. In particular, we hypothesize that there may be

distinct 3D morphologies of DCIS that can be identified using

microscopy images of serially sectioned resected human speci-

mens. Additionally, these 3D morphologies may be produced

through different growth mechanisms, and may appear to be

morphologically similar in 2D sections.

Our motivation for this hypothesis is illustrated in Fig. 1, where

we show two different cribriform morphologies produced from in

silico simulations [40] of DCIS growth. In these simulations, a

monolayer (Fig. 1A) of polar epithelial cells (blue) surrounded by a

sheath of myoepithelial cells (cyan) are permitted to mitose,

migrate, and apoptose at prescribed rates. Cells interact biome-

chanically, using a ‘‘Voigt,’’ damped-spring model, and all cells

exhibit cohesion to a left- and right- neighbor, which maintains

their polarization, so that the apical side of all epithelial cells

always point toward the luminal space. Details appear in [40].

From these simulations we find that a cribriform subtype

appears - due to very different causes - either with (Fig. 1B) or

without (Fig. 1C) apoptosis. To simulate apoptosis, we remove cells

from the simulation when they are overcrowded (defined to occur

when they acquire more than 10 neighbors), and we reconnect

their left- and right- neighbors to one another. Thus we find that at

rapid reproduction rate in the presence of apoptosis, holes, or cribra,

form in areas of cell death, producing the pattern shown in Fig. 1B.

On the other hand, at a lower reproductive rate in the absence of

apoptosis, we find that cribra can again be formed, but in this case

due to the merging of papillary fronds into so-called ‘‘Roman

Arches’’ [41]. In the first case, cellular reproduction must be very

rapid (to produce cell death through overcrowding), while in the

second, reproduction can be slower due to the lack of cell death,

allowing arches to form. Clearly the speed of reproduction and cell

death are important to prognosis, yet these properties are not

apparent in 2D sections of tissue specimens.

Based on these observations, we propose that there may be two

different mechanisms for cribra formation: one driven by merging

papillae leading to an open, branch-like structure, and a second

driven by apoptosis leading to a closed, sponge-like, architecture

[40,41]. In support of this proposition, we note that prior work has

identified luminal spaces in papilloma and papillomatosis as being

a network structure having a ‘slit-like’ appearance, possibly

associated with merging papillae, whereas a second, cribriform

structure, was identified as being ‘porous’, such that the microlu-

mens have a ‘punched-out’ appearance [33].

The goal of the present paper is to establish whether such

distinct morphologies were present in actual 3D reconstructions

and the following sections show that they are indeed present. With

this aim, we develop tools to analyze 3D morphological

characteristics of ex vivo DCIS specimens and as we will describe,

we find that analysis of the third dimension yields insights into

DCIS that are not apparent in 2D. Specifically, we investigated

whether the 3D architecture of DCIS exhibits subtypes that

cannot be characterized in 2D, with the assumption that these

subtypes may relate to different mechanisms of growth.

We clarify that the purpose of this work was not to classify the

specimens into carcinoma vs. non-carcinoma, but to use the 3D

reconstructions as a tool to evaluate the morphology of the DCIS

microluminal structures, and to shed light on the mechanisms of

formation leading to an observed state. We found that there were

at least two different 3D architectures, ‘bubbles’ and ‘tubes’,

identified in the cribriform specimens that were classified as the

same 2D subtype. We hypothesize that these architectures relate to

the two proposed mechanisms of growth discussed in the previous

paragraphs: merging papillae and apoptosis.

Materials and Methods

I. Materials
Preliminary data was obtained from the Cancer Institute of New

Jersey (CINJ), from which we developed preliminary reconstruc-

tions using manual segmentations and itk-snap [42] for developing

the 3D reconstruction. These preliminary specimens were

unpublished data from biopsy specimens that consisted of up to

100 serial segmented and light microscopy imaged slides (using 46
magnification).

The specimens used for this study were collected from the

Tokyo Woman’s Medical Hospital from 8 patients. Each specimen

was diagnosed with cribriform-type ductal carcinoma in situ,

serially sectioned into sequential slices 4 microns thick, stained

with hematoxylin and eosin (H&E), and mounted on slides. This

procedure resulted in 100 serial segmented slides in which 33 ducts

were identified and imaged using light microscopy (46 magnifi-

cation). These slides were imaged using an Olympus DP71

camera, creating images of size 4080 by 3072.

Each specimen could contain numerous ducts, so within these

specimens we chose ducts of interest (i.e. a cribriform duct wholly

contained within the specimen.) We cropped the image by

manually selecting a square around the duct of interest, such that

the cropped image ranged from 500 by 500 to 1500 by 1500

pixels2 depending on the size of the ductal region of interest. In

some datasets, the ductal region of interest reduced in size and

Figure 1. Simulations of DCIS development. A The initial duct
starting from the original state of reproducing epithelial cells (blue)
surrounded by myoepithelial sheath (cyan). Cribriform subtype is
produced at B high reproductive rate with apoptosis, and C high
reproductive rate without apoptosis (for simulation details, see: Norton
et al., 2010).
doi:10.1371/journal.pone.0044011.g001

3D Architectures of DCIS Using Reconstructions
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closed off before the end of the specimen: in these datasets we used

fewer than 100 images. The resulting tiff images are 8 bit red/

green/blue (RGB) with a pixel size of approximately 0.9 microns.

From our collected data, we identified in total 18 duct samples

that were histologically classified as DCIS (through consultation

with Drs. Barnard & Fujibayashi), of good quality, and were at

least 40 serial sections in length. Out of these 18, three were not

reconstructed because there were alignment issues.

Ethics Statement. All samples from CINJ were de-identified,

already collected in tissue banks, and obtained through an Internal

Review Board (IRB)-approved protocol at CINJ under Internal

Review Board: UMDNJ-New Brunswick/Piscataway Campus;

Individual consent was not obtained as this was an Exempt (#4)

study.

Each dataset from the Tokyo Women’s Medical University

Medical Center East consisted of de-identified human breast

specimens from resected material that were taken for the purpose

of therapy. All patients chose for the surgery to be performed. All

the data sets were anonymous and only encoded numbers were

used to specify the sample. All samples were already collected in

tissue banks, and are therefore considered exempt under IRB

status. When these specimens were taken, consent was not

obtained to use these specimens for research, as this was not

standard practice at the time. For de-identified tissues, it was also

not standard practice for physicians to obtain approval of IRB

from the university to use them for research and publishing and

thus was not obtained. We have complied with the ethical

standards of Tokyo Women’s Medical University Hospital.

II. Procedure
In order to produce automated 3D reconstructions, we

incorporated three tools: 1) an automatic alignment method, 2)

an automated segmentation method of a) individual ducts, and b)

intraductal cribra, and 3) a 3D reconstruction tool to produce a

final 3D representation. We describe each tool in turn below.

1) Automatic Alignment. The first step of our analysis was to

automatically register, i.e. align, previously acquired serial images

of specimens with DCIS. Registration of slide-mounted sections

presents numerous challenges [43]. First, the process of embedding

tissues in paraffin prior to slicing causes distortion and shrinkage

[43] - a problem that is especially troublesome in breast tissue due

to its fatty nature [44]. Additionally, successive images suffer

mechanical deformations during slicing and mounting, and cell

locations, empty spaces, and fatty tissue differ between consecutive

images. Lastly, coloration of the tissue is variable, due both to the

necessity of individually staining each section, and to variations

associated with features including nuclei, fat, and blood vessels, as

well as unwanted debris. We have constructed alignment and

segmentation methods that successfully cope with all of these issues

to align and segment serial sections from a paraffin-embedded

DCIS tissue block.

The alignment method used for this project is ‘‘rigid,’’ meaning

it incorporates only rotation and translation, and does not morph

or otherwise distort the image, see Fig. 2. The algorithm,

implemented in Matlab, is as follows.

– First, we temporarily reduce the resolution of the photomicro-

graphs of adjacent sections to produce images close to

5006500 in size. This serves two purposes: 1) it produces a

uniformly successful algorithm that reduces the effects of size

variations between images and 2) it improves processing time.

– Second, terming one image the ‘‘base’’ image, and its adjacent

image the ‘‘unregistered’’ image, we construct a 1506150

‘‘template’’ for each image that we will use to compute optimal

translation distances and rotation angles. Using a very small

size template speeds up analysis and additionally eliminates

problems such as small noise features or duct border details.

– To create the template, we perform Otsu thresholding [45] in

the red channel (a strong signal for H&E staining). We

calculate the centroid of the largest object using the centroid to

identify our object of interest, in this case the duct. We

construct the 1506150 template using the centroid as the

center position.

– We then convert the low resolution template and unregistered

images to grayscale, thus lowering the processing time while

keeping intensity information, and we rotate the unregistered

image about the centroid to maximize the normalized cross-

correlation with the base image [46],

c(u,v)~

P
x,y

½f (x,y){fu,v�½t(x{u,y{v){t�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x,y

½f (x,y){fu,v�2
P
x,y

½t(x{u,y{u){t�2
r ð1Þ

Here, c(u,v) is the normalized cross-correlation, f(x,y) is the

unregistered image, t(x,y) is the template image, t is the mean of

the template and fu,v is the mean of f(x,y) in the region under

the template between the low resolution segmented duct base

image and rotated unregistered image, u and x are the row

positions whereas v and y are the column positions of the matrix

or image, respectively. Since each image is stained individually,

intensities can differ from image to image, and we normalize

the cross-correlation to compensate for these differences.

– Then, we rotate the low-resolution unregistered image by an

angle that maximizes the cross-correlation, and we fill any new,

non-overlapping, areas (see top and right boundaries in Fig. 2)

with a background to produce low correlation in these areas.

– After the optimal angle has been calculated, the template is

suitably rotated, and then its translation is calculated to

similarly maximize the normalized cross-correlation. The

maximum translation allowed is 20% of the length of the

image in either direction, which is determined by obtaining the

best correlation within this range. We find that this restriction

effectively prevents occasional false alignments in which the

registered image is rotated and translated to align background/

stromal areas, leaving the duct areas non-overlapping.

– Finally, we rescale the optimal rotation and translation values

obtained using the ‘‘template’’ images to rotate and translate

the original high-resolution image.

Once all images have been aligned, segmentation is performed,

in two parts: duct segmentation, used to segment the cellular

regions from the background (fat and ECM), and intraductal

cribra segmentation, used to segment the microluminal spaces

within ducts.

2) Automatic Duct Segmentation. Duct segmentation is

performed as follows, see Figure 3. Intensities in the H&E stained

images typically range from 100–255, so we first expand these

values to span the full range 0–255. This broadens the dynamic

range of the image, improving the apparent contrast.

To isolate the ductal regions from the rest of the image, we

make use of the fact that H&E staining stains the nuclei of the cells,

and thus ductal regions tend to be purple in hue. The red channel

alone was sufficient to perform alignment, however we have found

that additional information is useful for segmentation. To segment

our images, we perform the following steps.

3D Architectures of DCIS Using Reconstructions
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– We convert from RGB to HSV, which allows us to more

clearly identify purple hues. We define Ir = intensity in the red

channel, Ig = intensity in the green channel, and Ib = intensity

in the blue channel, and we calculate the Value

V = 0.3*Ir+0.59Ig+0.11Ib. Next, we define Cr = Ir2V and

Figure 2. Alignment Results (Sample dataset). A ‘‘Base’’ image: 5th slice in sequence of paraffin-embedded exemplar specimen. The image has
been previously aligned by comparison with 4th slice, as shown by comparison with black background. B ‘‘Unregistered’’ image: This is the 6th

sequential slice from the same exemplar specimen. C Overlay comparison of base and registered image - formed by rotating and translating the
unregistered image as described in text. The base image is shown in red, the registered image is shown in green. Most of the image is correctly
aligned, as seen by the mostly yellow (red+green) overlay, and black again represents extra background introduced by alignment.
doi:10.1371/journal.pone.0044011.g002

Figure 3. Duct and Cribra Segmentation Flowchart. On the left, we show the general layout of the duct segmentation. We use contrast
enhancement to ‘normalize’ each image to account for differences in staining that may occur for each slice. Thresholding is used to binarize the
image. Hue segmentation can result in white pixels of the background to be picked up as duct, thus we remove them. Morphology operations are
used to smooth the duct segmentations and remove minor artifacts. On the right, we show the layout of the cribra segmentation method. We use
contrast enhancement to ‘normalize’ each image and better delineate the cribra. We use thresholding to binarize the image and identify ‘white’ cribra
and ‘pink’ debris. These segmentations are combined and the background outside of the duct region is removed. Morphology operations are used to
smooth the duct segmentations and remove minor artifacts.
doi:10.1371/journal.pone.0044011.g003

3D Architectures of DCIS Using Reconstructions
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Cb = Ib2V, and designate Hue and Saturation according to

H = arctan(Cb, Cr) and S~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cr2zCb2
p

, respectively.

– We threshold the image using the Hue (H), defined above, so

that H,0.7 is mapped to 0, and H$0.7 become 1, which

segments the purple regions; a value determined by trial and

error to produce effective segmentation. The latter category

selects white as well as purple regions, so we remove white from

the segmentation by excluding pixels with red intensities

greater than 150.

– Next, we perform mathematical morphology operations:

opening using a disk of radius 1 and closing using a disk of

radius 3, to remove false connections and small protrusions and

to close small gaps, respectively. We fill in holes within the

segmentation so that the segmented regions are solid. DCIS

cell sizes tend to vary but are approximately 10 microns in

length. Any pieces that are smaller than the area of six nuclei

(2290 square pixels) are removed from the segmentation

because these segments are too small to be ducts and are likely

noise or isolated cells. We improve the convexity of the

segmentation by doing a large closing operation using a disk of

radius 9, dilating and eroding each section, smoothing and

filling any indentations on the borders of the segmentation. We

then fill any holes formed during this process.

3) Automatic Cribra Segmentation. To segment intraduc-

tal cribra, we must distinguish true cribra from other ductal

features. For example, uneven staining can skew cribra segmen-

tation to make cribra appear larger or more numerous than in

actuality. Our cribra segmentation algorithms therefore separately

address robust equalization of intensities and morphological

operations, which we discuss in turn.

Robust Equalization is used to equalize image features in the

presence of unavoidable dye and lighting differences; we perform

several steps.

– First, we perform histogram equalization [47] with 16 tiles

(464), using the green channel of the original image.

Histogram equalization is a contrast enhancement technique

that adjusts the histograms in each tile to approximately match

a uniform distribution. This method corrects for uneven

staining and increases the contrast in the image, both of which

delineate the cribra from the rest of the duct. The green

channel is used for this because empirical tests using various

channels and combinations reveal that this produces the most

veridical cribra segmentation.

– Second, we threshold intensity values of the equalized image to

identify cribra boundaries. We find again that the green

channel discriminates these images best: explicitly, we identify

green pixel values over 1 standard deviation above the mean,

and use Otsu thresholding [45] to find the threshold value that

best delineates this region, defining the cribra to consist of the

higher intensity regions. We restrict thresholding to be

performed only in a high intensity range, because green

intensity histograms exhibit a peak that correlates strongly with

cribra locations. As a practical matter, in some images the Otsu

threshold value is found to be greater than 242, and in this case

we find that using 242 as the threshold produces reliable

segmentation.

– Third, we find that using just the green channel, our algorithm

can erroneously fail to identify a cribrum if it contains cellular

debris. This debris is often stained pink, and can be identified

by having a high saturation. We therefore correct for debris by

normalizing saturation values before performing Otsu thresh-

olding to binarize the image.

– Fourth, we combine the Ductal and Cribra segmentations,

remove the background areas (outside of the duct), and fill

holes identified in the previous step as being white (micro-

lumenal) or pink (microlumenal with debris).

– Finally, we erode the segmentation using a disk of radius 4 to

correct for minor enlargements of cribra size produced by

thresholding and segmentation.

Mathematical morphology operations are then performed to

correct for a number of minor errors encountered during

algorithm testing. These are as follows.

– Debris near the edge of a cribra can produce a cribra with a

crescent- rather than a circular- shape, see Figure 4. To correct

for this error, we close small gaps by using a closing operation:

dilatation followed by erosion, on the image using a disk

structuring element of radius 3.

– Although most debris tends to occur on the edge of a cribra -

and can be removed as described in our segmentation

corrections - debris within a cribrum can sometimes be within

the cribra itself, in which case it will leave a small hole in the

segmentation. We therefore fill in any holes, which appears to

correct for this anomaly.

– We also find that the edges of our segmentations may not be

smooth and may exhibit small protrusions. Likewise, when we

fill in small holes, we sometimes produce uneven edges. We

therefore smooth segmentation boundaries by using an

opening operation: erosion and then dilation, on the image

using the same disk size of radius 4. The closing operation

performed here can close small gaps leaving a connected edge

with a small hole at the location of the gap. Therefore we fill in

any holes a second time to correct for this error.

– Finally, cribra on borders of the image may not be completely

imaged, so we clear the vicinity of borders to remove these

incomplete cribra. We remove small objects (,100 pixels2)

since they are too small to be considered cribra.

4) 3D Reconstruction. To produce a 3D reconstruction, we

stack the binary images obtained from the cribra segmentation

algorithm. We reduce the size of the images so that 1 voxel is

approximately 4 microns in a side, since each serial section is

4 microns thick. We create surface points in the volume data using

the Matlab function ‘isosurface,’ which produces surfaces from

sequential closed curves, and we connect the surface vertices using

the Matlab ‘patch’ function [48]. This produces a 3D structure,

which we smooth using Matlab’s ‘isonormals’ function.

We hypothesized that there would be two types of cribra present

in the 3D reconstructions, ‘bubble-like’ cribra resembling small

holes throughout the duct or ‘tube-like’ cribra that ran most of the

Figure 4. Crescent Issue. A An example cribra compared with an
illustrative B cribra segmentation. Here is an example of the crescent
issue (red arrow) that can occur before a closing operation, where the
cribra is not a smooth surface but has a crescent-like gap. C This shows
an illustration of how the closing operation can fix this type of issue.
doi:10.1371/journal.pone.0044011.g004

3D Architectures of DCIS Using Reconstructions
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way through the duct. The length of the duct ranged from 40

sections to 99 sections and we assumed the size of ‘bubble-like’

cribra should be small irrespective of the length of the duct. Thus,

the 3D reconstructions were classified as ‘bubble-like’ if the largest

cribrum was ,25 sections (100 microns) in height, ‘tube-like’ if the

largest cribrum was .35 (140 microns), and ‘unclear’ if it was

between these two values.

III. Statistics
To evaluate the accuracy of our automatic segmentation

algorithms, we manually segmented 5 slices from each of 20

different serially sectioned duct datasets, which resulted in a

dataset of 100 manually segmented cribra images. We compared

the manually segmented images to the automatically segmented

cribra using ‘‘precision’’ and ‘‘recall’’, two of many possible

statistical metrics available [49]. Precision and recall (Eq’s 2,3) are

commonly used in engineering and segmentation research [50,51],

and provide objective measures of how well an imaging algorithm

agrees with ‘‘ground truth.’’ In general terms, precision is a

measure of how many pixels chosen by the algorithm are outside

of the lesion (false positives: FP) as compared with correctly

identified lesion pixels (true positives: TP). By contrast, recall is a

measure of how many lesion pixels are missed by the algorithm

(false negatives: FN) as compared with true lesion pixels. In this

way, precision and recall balance one other and often a high score

in one implies a low score in the other. Finally, ground truth is

defined to be images that are manually segmented in consultation

with a practicing cancer pathologist (Dr. N. Barnard).

Precision and recall are defined as follows:

Precision~
TP

TPzFP
� 100% ð2Þ

Recall~
TP

TPzFN
� 100% ð3Þ

In order to assess the accuracy of the 3D reconstructions, we built

3D reconstructions using the automatic reconstruction method

and manual reconstructions and verified that the basic architec-

tures were the same. We also plot the heights vs. aspect ratio of a

pair of representative reconstructions. We use linear fitting of the

data using least squares, with the polyfit() function in Matlab.

Results

To demonstrate the feasibility of our approach for building 3D

reconstructions, first we examined the performance of the

alignment. We found that the alignment method was successful

for most of the images (there was a 3.6% error rate out of 1712

images that were examined), as in the example case shown in

Figure 2. In Fig. 2C, areas of agreement between successive

sections appear in yellow, while areas that differ appear in red or

green. For the example shown, it is evident that most of the image

is yellow and thus the image is aligned nearly everywhere.

Next, we used our segmentation approach to segment out the

ducts and the cribriform regions within the ducts. We seek to

determine the 3D architecture of these regions, specifically

examining whether they have a closed, ‘bubble-like,’ architecture

or an open, ‘tube-like,’ architecture. We show a typical segmen-

tation in Figure 5. In this image the original image has been

aligned in Fig. 5A, and the segmented cribra image, Fig. 5B, shows

the duct and background as white and the cribra as black. We find

that sometimes the duct segmentation algorithm includes areas

outside of the actual ductal regions, such as the fat globule in Fig. 5,

but that the segmentation algorithm seems to reliably capture

cribra.

To assess the accuracy of our automatic cribra segmentation, we

compared the manually segmented dataset (100 images) to their

respective automatic segmented images. We determined that the

median precision of the algorithm is 85.5%, with mean 74.9%,

and interquartile range of 23.9; the median recall is 76.3%, with

mean 71.2%, and interquartile range of 19.4, see Table 1. In some

cases known issues appeared due to a large amount of stained

immuno-infiltrate that was recognized as cellular material and thus

interfered with the duct segmentations. If we exclude these

samples (20) as shown in Table 1 as the ‘‘Reduced Dataset’’, the

reduced dataset achieved a median precision of 86.7%, a mean

precision of 80.1% and an interquartile range of 20.4%. The

reduced dataset had a median recall of 76.1, a mean recall of

70.6%, and an interquartile range of 19.1%. Based on these

findings and the visual results, see Fig. 5, we conclude that our

Figure 5. Cribra Segmentation. A Original aligned image, compared with B automatic cribra segmentation. Most of the cribra are completely
identified but in some cases some of the cribra is absent or incomplete, see red arrow in B. In other cases there are false cribra but these are small and
few in number. In A the red arrow indicates a fat globule that can be incorrectly identified as a cribrum. This example has a Precision score of 81.1 and
a Recall score of 82.0.
doi:10.1371/journal.pone.0044011.g005
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automatic segmentation algorithm is sufficiently accurate to

reliably build 3D reconstructions.

Finally, we assembled successive slices into 3D reconstructions,

as described in the Materials and Methods section. We found two

types of cribra architectures. First, as shown in Fig. 6A,B&C, we

find what we term ‘tubes’ – large and connected cribra that extend

the length of the specimen, ,90, and with aspect ratio up to ,25.

Second, shown in Fig. 6D,E&F, we found what we term ‘bubbles’

– cribra with maximum dimension ,15 voxels and aspect ratio

#15: these appear as small, isolated regions that do not extend

through the length of the specimen. We emphasize that the 2D

sections, shown as insets to Fig’s 6A&D, are similar, yet the 3D

structures differ significantly.

In Figure 6B&E, we show 3D reconstructions of two exemplar

datasets illustrating the qualitative differences between the two

architectures found, and in panels C&F, we show quantitative

comparisons between the two architectures. For rotated views of

these 3D reconstructions see Videos S1 & S2.

The plots in Fig’s 6C&F, were produced by sampling 10,000

voxels from each reconstruction. For each voxel within a lumenal

space, we evaluate the length, width, and height, and plot for each

pixel the aspect ratio (height/length) as a function of height.

Length, width, and height are measured in terms of number of

Table 1. Precision and Recall of Automatic Cribra Segmentation Algorithm.

Automatic Cribra Segmentation Number of Samples Precision (Median) Recall (Median)

Total Dataset 100 85.5% 76.3%

Reduced Dataset 80 86.7% 76.1%

doi:10.1371/journal.pone.0044011.t001

Figure 6. Exemplars of Bubbles and Tubes from Automatic Reconstructions. A Example of a serial section showing the duct of interest,
taken at 46. B 3D reconstruction (99 sections) of corresponding microlumenal structure showing ‘tube-like’ architecture. C Plot of cribra height (in
voxels) vs. aspect ratio from the 3D reconstruction. D Example of a serial section showing a duct of interest at 46, note the similarity to panel A. E 3D
reconstruction (80 sections) of corresponding microlumenal structure showing ‘bubble-like’ architecture. F Plot of cribra height (in voxels) vs. aspect
ratio from the 3D reconstruction of the second specimen, note the clear differences in aspect ratios.
doi:10.1371/journal.pone.0044011.g006
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voxels, with each voxel approximately being equivalent to

4 microns cubed. Length and width are determined by evaluating

the number of contiguous voxels within the lumenal space in the x-

, y-, and z- directions, where x and y are in the plane of the slice,

and z is the normal to a slice. Voxels outside of lumenal spaces are

not included in this calculation. These plots demonstrate that

essentially indistinguishable 2D sections of cribriform

DCIS (insets to Fig’s 5A&D) exhibit 3D morphologies that
differ both qualitatively and quantitatively.

I. Validation
To verify that the 3D reconstructions accurately represent the

3D architectures of the cribra, we manually segmented cribra in

15 serial sections from 5 different ducts, resulting in a total dataset

of 75 manually segmented images. We built a 3D reconstruction,

using the same method described above, of the manually

segmented cribra and compared it to the automatically segmented

3D reconstruction. A typical comparison is shown in Figure 7,

once again the axes and heights are in voxels. In the figure, we also

plot the aspect ratio vs. the height for both reconstructions and

find them to be nearly identical. We used a linear fitting algorithm

for each reconstruction and found the linear fits to be similar. The

automatic reconstruction data had a linear fit of y = 0.05x+0.50

with a norm of residuals 57.6. The manual reconstruction had a

linear fit of y = 0.06x+0.45 with a norm of residuals 66.5.

Therefore, we conclude that the automatic 3D reconstructions

are accurate enough to describe the 3D morphology of the cribra.

As explained in the materials and methods section, 15

specimens remained in the dataset that fit the inclusion criteria.

These 15 datasets were reconstructed and classified, see Table 2.

Twelve out of the 15 specimens that we examined exhibited 3D

reconstructions that fit into two categories of patterns: isolated

bubbles scattered throughout most of the ductal region, or a

network of cribra located near the duct borders. We found 3 cases

in which the 3D reconstructions fell into the intermediate category

where it was unclear which class it belonged to. There were

samples in which both types of structures seemed to appear as well.

Discussion

To summarize, we have developed an approach to reconstruct

3D images of cribriform ductal carcinoma in situ (DCIS). The

approach consists of four parts, 1) alignment, 2) duct segmentation,

3) cribra segmentation, and 4) 3D reconstruction. We have

evaluated the overall accuracy of our approach in terms of

precision and recall and achieved good accuracy. Since our work is

less dependent upon completely segmenting the entire cribra and

more upon accurately characterizing the 3D morphology, in

particular whether the cribra are connected or separate, having

90% accuracy was not necessary. Even if the entire cribra was not

segmented in a section, the piece that was segmented would still

connect to the overlapping piece in the successive cribra, and

therefore the 3D morphology would be the same. We have also

independently assessed the accuracy of the 3D reconstructions and

found that the essential features of the 3D cribra architectures

were consistent for the automatic and manual reconstructions.

Importantly, from our analysis we have identified for the first

time that two distinct categories of 3D cribriform structures are

present in human tissue samples. First, we have found ‘bubble-like’

cribra, suggestive of a possible apoptotic mechanism that may

destroy localized overpopulated regions, leaving behind empty

spaces. In these specimens, we found cribra scattered throughout

the duct without any evident pattern. Second, we found ‘tube-like’

cribra that extend through the length of the specimen, consistent

with the possibility that these cribra may have been formed

through the documented mechanism of merging of micropapillary

fronds [41]. In this case, we saw that the cribra seemed to be

located toward the outside of the duct, paralleling the ductal

architecture, with very few cribra within the duct interior. Other

work has identified these two types of microluminal spaces, but in

that work, it was reported that interconnected lumens were found

in papillomatosis, whereas the round isolated ‘bubble-like’ lumina

were found in cribriform DCIS [33]. All of our samples, by

contrast, have been identified by an experienced cancer pathol-

ogist (NB) to be cribriform in structure.

The identification of two distinct types of 3D architectures in

cribriform DCIS supports the hypothesis that these are the result

of differing mechanisms governing growth and progression of the

disease. These mechanisms of growth may lead to different patient

outcomes, and thus have prognostic value. For instance, if as

predicted from our previous model [40], ‘bubble-like’ architectures

are the result of cells with high proliferation rates and apoptosis

and ‘tube-like’ are the result of cells with moderate proliferation

and low apoptosis, this would suggest that distinct pathways are

affected in each case. DCIS displaying ‘bubble-like’ architectures

would most likely have developed self-sufficiency in growth signals

or resistance to anti-growth signals, such as through alterations in

the Ras or pRb pathways [52]. In contrast, DCIS displaying ‘tube-

like’ architectures would most likely have developed resistance to

apoptosis, such as through alterations in p53 [52]. Thus these

architectures may not only reflect differences in the mechanism of

progression but also differences in the cellular properties, which

could correspond to different patient outcomes. We propose that

some of the difficulties in determining prognosis for DCIS lesions

may be a result of this heterogeneity that is not reflected in the

current 2D analysis of lesions and further investigation is

warranted.

It is clear from this research that image segmentation and 3D

reconstructions are valuable tools that promise to benefit breast

cancer and other areas of cancer research. For instance, Bartels,

Thompson, and colleagues, developed an automated segmentation

and prognosis system for histopathology [27]. Such techniques

have been developed for prostate [27,28], colorectal [29], and

ductal carcinoma in situ (DCIS) tumor tissue [30]. For DCIS, their

method focuses on segmenting out the ductal and luminal region

based on a previous method for segmenting cribriform gland tissue

of the prostate [53]. The segmentation approach uses a number of

thresholding techniques, morphometric operations, and the use of

a knowledge file [54] to segment out the ductal structures [30]. A

cribriformity index was also developed as a measure of the ratio of

microlumens to gland area within a duct [30]. They were able to

distinguish DCIS from ductal hyperplasia using their segmentation

method, but were unable to segment 14% of the images. A

number of image segmentation techniques have also been applied

for automated border detection in dermoscopy images (see [55] for

a review).

Imaging and 3D reconstruction techniques can also be useful

tools for visualizing the spread of pre-invasive, invasive and/or

metastatic breast cancer within the ductal system. For instance, the

size or extent of DCIS is often measured from a single slide, which

is known to be inaccurate and to underestimate extent [56,57].

Many existing methods, such as using calcifications, mammogra-

phy, and blocks to measure extent have also been shown to

underestimate the extent of the disease [56–59]. The improvement

of imaging and reconstruction techniques may provide the

necessary tools for developing an accurate way of measuring

extend. 3D reconstructions from serial sections, such as we have

described, may be a useful tool for visualizing invasive and
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metastatic disease as well. In fact, the spatial arrangement of areas

of normal and cancerous breast tissue were distinguishable using

sequential sections and a tumor marker, c-erbB-2 [60]. Using 3D

reconstructions of sentinel lymph nodes, another study developed

3D visualizations of metastatic breast cancer and found that

metastatic growth occurred in three patterns: sinusoidal, nodular,

and diffuse [61]. With improvements in imaging techniques, the

ability to visualize the spread of individual patient’s breast cancer

certainly has the potential to improve diagnosis and early

detection.

Lastly, it seems reasonable to expect that other cancers – for

example prostate or colorectal cancer – may likewise exhibit 3D

morphologies that present a record of the details of past growth

and future prognosis not available from 2D sections. 3D co-

cultures and dermoscopy demonstrate that 3D information could

help in distinguishing non-malignant from malignant phenotypes

[13,62]. The morphology of many different cancers has been

found to be different in 2D vs. 3D and the importance of 3D cell

models has already been established, see [63]. Thus, we propose

that the examination of the 3D morphology of human cancers

could be the next step in understanding cancer progression and

improving cancer diagnosis.

In conclusion, two different 3D cribriform architectures were

identified that would not be identifiable using traditional 2D

visualizations. The differing architectures may be governed by

different mechanisms, and therefore may ultimately have different

progression or invasive potentials. It seems plausible that these

different architectures represent different histories of cellular

growth, and consequently it would seem prudent in the future to

determine whether 3D reconstructions may be a useful tool for

diagnostic - and prognostic - evaluations of DCIS.

A future direction of this work would be to produce a robust 3D

in silico biomechanical simulation of DCIS progression that we

could correlate with the 3D reconstructions. Since we hypothesize

that 3D biomechanical interactions between cells play a central

role in selection of which of the four known morphologies of DCIS

appear, and we have shown that the 3D morphology of DCIS is

complex, extending the 2D model to 3D would help further

Figure 7. Automatic vs. Manual Segmentation. A is the 3D reconstruction of 15 slices using the automatic segmentation algorithm. B shows
the plot of the aspect ratio vs. height. C is the 3D reconstruction of 15 slices using manual segmentations. D shows the plot of the aspect ratio vs. the
height for the manual reconstruction. Both quantitatively and visually the architectures of the reconstructions are consistent. The axes and heights
are in voxels.
doi:10.1371/journal.pone.0044011.g007

Table 2. Breakdown of ‘Bubble-like’ and ‘Tube-like’ 3D
Reconstructions.

‘Bubble-like’ ‘Tube-like’ ‘Unclear’ Total

6 6 3 15

doi:10.1371/journal.pone.0044011.t002
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elucidate the progression of DCIS. In addition, such a simulation

could explain the conditions that lead to bubbles vs. tube

formation of cribra, which would be validated using the 3D

reconstructions. We speculate that these distinct growth patterns

may lead to different patient outcomes.

Supporting Information

Video S1 Movie of a ‘Tube-like’ 3D Reconstruction.

(MOV)

Video S2 Movie of a ‘Bubble-like’ 3D Reconstruction.

(MOV)
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