
Web Application Firewall using Character-level
Convolutional Neural Network

Michiaki Ito Hitoshi Iyatomi
Applied Informatics

Faculty of Science and Engineering

Hosei University, Japan

Email: {michiaki.ito.3a@stu., iyatomi@}hosei.ac.jp

Abstract—Web applications can be maliciously exploited by
malicious HTTP requests. Normally, web application firewall
(WAF) protects web applications from known attacks using pat-
tern matching method. However, introduction of WAF is usually
expensive as it requires the definition of patterns according to
the situation. Furthermore, the system cannot block unknown
malicious request. In this paper, we come up with an efficient
machine learning approach to solve these issues. Our approach
uses Character-level convolutional neural network (CLCNN) with
very large global max-pooling for extracting the feature of HTTP
request and identify it into normal or malicious request. We
evaluated our system on HTTP DATASET CSIC 2010 dataset
and achieved 98.8% of accuracy under 10-fold cross validation
and the average processing time per request was 2.35ms.

Index Terms—deep learning; web application firewall; network
intrusion detection

I. INTRODUCTION

Usual firewall blocks malicious packets with information up

to the transport layer in TCP/IP model, whereas web applica-

tion firewall (WAF) [1] does with that in the application layer.

Therefore, WAF has a capability to deal with attacks on the

application layer that ordinary firewall does not. Typical WAF

blocks malicious or suspicious packets with pattern matching

strategy referring to pre-defined signatures. The strategy can

be categorized into two; the blacklist-based and the whitelist-

based methods. The former blocks packets by referring pre-

defined signatures of malicious ones, while the latter allows

only transactions with those of normal traffic patterns. The

blacklist-based methods cost relatively low because what one

need is to define black signatures based on known attacks.

Instead, they usually cannot treat unknown and subspecies

attacks. By contrast, the whitelist-based methods are likely

to block those attacks, while they need the detail definition

of white signatures based on normal transactions on the

application to be protected; thus they are usually expensive.

Also, since they do not allow any transactions other than on

the list, their applicable fields are limited.

In such backgrounds, several studies have been proposed to

reduce introduction costs and improve detection accuracy of

malicious packets using machine learning methods [2-6].

Wakiou et al. [2] detected complicated SQL injection attacks

using naı̈ve Bayes method and hybrid pattern matching system.

Their system showed 97.6% in precision. Zhang et al. [3]

detected attacks within HTTP traffic using naı̈ve Bayes and

achieved an accuracy of 82.3%. Although these methods

achieved certain degree of detection accuracy for attacks, there

is a room for improvement in terms of practicality.

Meanwhile, in the field of machine learning, deep learning

techniques have been gaining a great deal of results and

attracting attention. In conventional machine learning scheme,

the fighting with two main problems; difficulty in design and

implementation of efficient hand-made features for classifi-

cation and fighting with over-fitting was continuing painful

development.

Convolutional neural networks (CNN) [7] is a representative

machine learning method in deep learning, mainly used for im-

age recognition problems. CNN has overcome such difficulties

thanks to their convolutional architecture and well-considered

regularization methods to suppress the over-fitting and show

representative research achievements in wide applications,

especially in image recognition [8, 9].

In natural language processing NLP task, recurrent neural

network (RNN) [10] and long short term memory (LSTM) [11]

are often used and demonstrated their effects [12]. In particu-

lar, LSTM is widely used in recent years because time series

data can be processed while considering past information

longer than RNN. However, training cost of LSTM is generally

expensive. Character-level CNN (CLCNN), as the name imply

is a CNN specialized in text processing and it convolves

character strings in a one-dimensional direction. CLCNN is

also frequently used in NLP task recently and shows promising

results [13]. The advantage of CLCNN is that the training

time is much less time than that of LSTM [14], and it has

high affinity for many effective and well-known strategies

derived from CNN. They are for example, data augmentation

on input dimension, drop-out for regularization, analyzing

methodologies of feature maps for model interpretation, and

so on.

In security studies with deep learning technique, Melicher

et al. [4] measured the ease of password guessing using LSTM

and achieved up to 70% in accuracy, that is better than Markov

model, probabilistic context-free grammar (PCFG) methods.

Raff et al. [5] analyzed whole Windows portable executable

(PE) file as a character string for malware identification with

CLCNN and achieved up to 94% in accuracy. They suggested

that investigating whole string sequence is necessary and the

effectiveness of global max-pooling in the cases where mali-

2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA 2018), 9 -10 March 2018, Penang, Malaysia

978-1-5386-0388-8©2018 IEEE 105

cious parts are unevenly distributed in a short part among the

target to be analyzed. Saxe et al. [6] created a malicious URLs

discriminator using CLCNN with different sizes (character

chunk lengths are between 2 to 5). In their model, the number

of input characters is limited to 200 and if the input does not

fit, they used only the backward. The number of convolution

layer is only one as the same as [5] and, the feature maps

convolved with different sized kernels are combined and then

analyzes it via the three full connection layers. They reported

the AUC (area under the ROC curve) of 0.993, which is about

0.008 higher in AUC than the N-gram + Deep neural network

methods on the same data.

From the above research, the method such as CLCNN is

effective for analyzing data in the security field. Although

their study was quite well organized and presents promising

performance, the following points are concerned when we face

large-scale data to handle; (1) Since the model has different

convolution sizes in parallel, it is impossible to fully exploit

the parallelism in the single GPU to cause delay, and (2)

large GPU memory usage due to three relatively large fully

connected (FC) layers.

In this research, we constructed an identification system for

malicious HTTP request assuming practical WAF implementa-

tion. Our system is composed of simple CLCNN architecture

receives the full text of the HTTP request as the input and

is characterized by the fact that performing a very large

global max-pooling. Large max-pooling significantly reduces

the dimension of input even in shallow network architecture,

realizing high accuracy while suppressing necessary resources.

II. METHOD

A. Dataset

In this study, we used HTTP DATASET CSIC 2010 dataset

[15]. This dataset was produced by the Spanish Research

National Council (CSIC). It is a summary of the traffic on the

Spanish e-commerce web application, which includes 36,000

normal traffic and over 25,000 malicious traffic.

Among malicious traffic, there are attack HTTP requests

such as SQL injection [16], buffer overflow attack [13], infor-

mation gathering. An example of SQL injection is shown in

Fig.1. In this example, the highlighted part is a character string

related to attack. The minimum, average, and maximum length

of the query was 473, 583, and 983 characters, respectively.

B. Preprocess for dataset

Since the raw dataset contains raw HTTP requests, URL

encoding has already been done for all characters within the

request. When this encode is fed to the model, it is difficult

to extract useful features of queries because a large amount

of escape characters of % are included. Therefore, we

performed URL decode for all queries, and encoding again

with Unicode; each character included in the character string

of the HTTP request is represented by an 8-bit numeric string.

We determined the input request length of CLCNN was

1000 characters based on the distribution of the length of

each request and the findings suggested by Raff et al. We

Fig. 1. Example of one SQL injection request data in the HTTP DATASET
CSIC 2010

h t t p : / /

Input text

Embedding

・・・

Dense1D - conv and Max pooling
128-length vector

1000-characters

Output

Fig. 2. Outline of our malicious query detection system using CLCNN

padded with 0 representing null in Unicode for the portion

insufficient in length.

C. Malicious query detection system using CLCNN

Fig. 2. shows the outline of our malicious query detection

system. The system has the embedding layer at first which

performs preprocessing and embedding as described in the

previous section. Each letter of the input HTTP request sen-

tence is converted into a 128-dimensional vector expression in

the Embedding layer, and propagated to the subsequent layers.

We defined the basic structure, the architecture A, deter-

mined based on preliminary experiments. The configuration

of this is shown in Fig. 3.

The architecture A performs convolution and max-pooling

twice and is connected to one-dimensional output via the full

connect layer. In the second max-pooling, the pooling size is

set as the same as the output dimension of the convolution, i.e.

convolved each map yields 1× 1 output with this process and

accordingly they produce the vector whose dimension matches

the number of immediate feature maps. Hyper parameters of

architecture A is only one; kernel size K. In all convolution

layer, 1×K kernel is applied and this parameter is also used

in the first global max-pooling. The convolution and the stride

size of pooling were all fixed at 1. All the activation functions

use the rectified linear unit (ReLU) function.

Again, our architecture is characterized by extremely large

dimensional reduction at the second max-pooling (e.g. 498: 1

2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA 2018), 9 -10 March 2018, Penang, Malaysia

978-1-5386-0388-8©2018 IEEE 106

Input layer (1000 characters)

Embedding layer (128 dimensions)

Concatenate the output and reshape into 64-length vector

Fully connected layer (relu) [64 units]

Batch normalization

Dropout 0.5

Fully connected layer (sigmoid) [1 unit]

Convolution Layer1-1
kernel size=K , filter_num=64

(relu)

Convolution Layer1-2
 kernel size=K , filter_num=64

(relu)

Max Pooling Layer1-1
kernel size=K

Max Pooling Layer1-2
kernel size=[size of Conv1-2's output]

Fig. 3. The structure of architecture A determined based on preliminary
experiments

at K = 2), so the number of FC elements in subsequent layer

is greatly reduced. This greatly reduces the size of the GPU

memory required.

For comparison, we built the architecture B as shown in Fig.

4 which concatenates four architectures as in parallel, referring

to Saxe et al. [5] and finally merges them. The hyper param-

eters of architecture B are the size of the convolution kernel

size alike the architecture A, but have four; K1,K2,K3,K4.

They are also applied in the size of the first max-pooling. The

stride sizes of convolution and max-pooling are all 1.

The number of feature maps in each convolutional layer of

architecture B equal to 1/4 of architecture A, that is, the total

number of them in architecture B is the same as architectures

A.

Input layer (1000 characters)

Embedding layer (128 dimensions)

Convolution Layer1-1

kernel size=K₁
filter_num=64

(relu)

Convolution Layer1-2

kernel size=K₁
 filter_num=64

(relu)

Max Pooling Layer1-1

kernel size=K₁

Max Pooling Layer1-2
kernel size=[size of
Conv1-2's output]

Convolution Layer2-1

kernel size=K₂
 filter_num=64

(relu)

Convolution Layer2-2

kernel size=K₂
 filter_num=64

(relu)

Max Pooling Layer2-1

kernel size=K₂

Max Pooling Layer2-2
kernel size=[size of
Conv2-2's output]

Convolution Layer3-1

kernel size=K₃
 filter_num=64

(relu)

Convolution Layer3-2

kernel size=K₃
 filter_num=64

(relu)

Max Pooling Layer3-1

kernel size=K₃

Max Pooling Layer3-2
kernel size=[size of
Conv3-2's output]

Convolution Layer4-1

kernel size=K₄
 filter_num=64

(relu)

Convolution Layer4-2

kernel size=K₄
 filter_num=64

(relu)

Max Pooling Layer4-1

kernel size=K₄

Max Pooling Layer4-2
kernel size=[size of
Conv4-2's output]

Concatenate the output and reshape into 256-length vector

Fully connected layer (relu) [64 units]

Batch normalization

Dropout 0.5

Fully connected layer (sigmoid) [1 unit]

Fig. 4. Structure of architecture B referring to Saxe et al. [5]

TABLE I
RESULT OF THE EXPERIMENT USING ARCHITECTURE A

Kernel size K 2 3 4 5 6 7 8
Accuracy [%] 97.5 97.6 98.1 98.3 98.7 98.8 97.8

III. EXPERIMENTAL RESULTS AND ANALYSIS

In the experiment using architecture A, we compare the dis-

crimination ability when changing the chunk size cut out from

the HTTP request character string. Experiment B is aimed at

verifying the effect of combining different convolution sizes,

in which good results have been obtained in the past research,

in a situation where the other conditions are the same. Each

evaluation was done with 10-fold cross validation. Results

obtained using architecture A and B are shown in Tables 1

and 2, respectively. Each result represents the average value

of five trials.

The highest classification accuracy was achieved when K

= 7 in architecture A and (K1,K2,K3,K4) = (4, 5, 6, 7) in

architecture B. In above condition, the average execution time

including preprocessing by architecture A and B was 2.35ms
and 3.40ms, respectively. These experiments used a single

GPU (Titan X pascal).

From these results, the simple architecture A showed supe-

2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA 2018), 9 -10 March 2018, Penang, Malaysia

978-1-5386-0388-8©2018 IEEE 107

TABLE II
RESULT OF THE EXPERIMENT USING ARCHITECTURE B

Kernel size
(K1,K2,

K3,K4)
(2, 3, 4, 5) (3, 4, 5, 6) (4, 5, 6, 7) (5, 6, 7, 8)

Accuracy [%] 95.2 98.0 98.2 97.8

TABLE III
THE RESULT ON HTTP DATASET CSIC 2010

Method accuracy [%] time [ms]
our CLCNN (architecture A) 98.8 2.35
our CLCNN (architecture B)* 98.2 3.40
Zhang et al.[3] 83.2 n/a
*:referring to Saxe et al.[5]

rior performance to architecture B both in the execution speed

and the accuracy.

IV. DISCUSSION

Our methods achieved more than 10% better accuracy than

Zhang’s method [3] using the same dataset even though it

is composed of a very shallow network structure. Among

all our tested shallow models, the K = 7 configuration of

architecture A showed the best results. The ratio of global

max-pooling with K = 7 was about 136:1, in fact it carried out

extremely large information compression. In its extreme, at K

= 2, i.e. the ratio of global max-pooling was 498:1, our model

still achieved very high detection accuracy of 97.5%. This

is probably because it is possible to equivalently search long

strings by convolution and large pooling. We also examined the

configuration of the deeper convolution layer and the global

average pooling, but they showed lower detection capability.

These results support the fact that large global max-pooling is

effective when malicious strings can be in the whole part as

suggested in literature [6].

Architecture A of a simple configuration realized equal or

higher accuracy than the architecture B constructed with ref-

erence to Saxe et al [5], and the execution time of architecture

A was shorter than architecture B. Here, our model deals with

all character strings of http request as input and thus the input

size of our model is getting bigger. In such situations, we

may think applying deeper network structures with successive

convolution is preferable as is common in image recognition.

However, large dimensional reduction at global max-pooling

in our model attained the smaller dimension of FC layer than

that in literature (64 × 64 for 1024 × 1024 × 1024 in [5])

with shallow structures. For this reason, the superiority at

the execution speed mentioned above is not only fast, but

also from the viewpoint of the more important discrimination

ability, over-fitting is more difficult to occur. By the way,

we confirmed some wrong data is included the dataset, some

HTTP requests which labelled as malicious has no malicious

character strings. So, the accuracy of the dataset used in this

experiment is considered to be almost an upper limit.

V. CONCLUSION

We proposed a system to realize fast, accurate and low-

cost WAF system by using deep learning approach. Our

system achieves these desirable features by adopting a shallow

CLCNN configuration that performs extremely large global

max-pooling. We will evaluate our system in practical situation

in near future.

REFERENCES

[1] A. Endraca, B. King, G. Nodalo, M. S. Maria and I. Sabas, “Web
Application Firewall (WAF),” International Journal of e-Education, e-
Business, e-Management and e-Learning, vol. 3, no. 6, pp. 451-455,
December 2013.

[2] A. Makiou, Y. Begriche, and A. Serhrouchni, “Improving Web Applica-
tion Firewalls to detect advanced SQL injection attacks,” in Information
Assurance and Security (IAS), 2014 10th International Conference on,
pp. 35-40, 2014.

[3] Z. Zhang, R. George, and K. Shujaee, “Efficient detection of anomolous
HTTP payloads in networks,” SoutheastCon, pp. 1–3, 30 March-3 April
2016.

[4] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin
and L. F. Cranor, “Fast, Lean, and Accurate: Modeling Password Guess-
ability Using Neural Networks,” 26th USENIX Security Symposium,
August 10-12 2016.

[5] J. Saxe and K. Berlin, “eXpose: A Character-Level Convolutional Neural
Network with Embeddings For Detecting Malicious URLs, File Paths
and Registry Keys,” CoRR, abs/1702.08568, 2017.

[6] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro and C.
Nicholas, “Malware Detection by Eating a Whole EXE,” CoRR,
abs/1710.09435, 2017.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” IEEE proc., vol. 86, no.
11, pp. 2278–2324, Nov. 1998.

[8] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Advances in Neural Informa-
tion Processing Systems, vol. 25, pp. 1097–1105, 2012.

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, abs/1409.1556, 2014.

[10] Y. Bengio, J. Louradour, R. Collobert and J. Weston, “Curriculum Learn-
ing,” Proc. of the 26th Annual International Conference on Machine
Learning, pp. 41–48, 2009.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[12] R. Johnson and T. Zhang, “Supervised and Semi-Supervised Text
Categorization using LSTM for Region Embeddings,” Proc. of the 33rd
International Conference on Machine Learning, vol. 48, pp. 526–534,
June 19-24 2016.

[13] D. Shimada, R. Kotani, and H. Iyatomi, “Document classification
through image-based character embedding and wildcard training,” IEEE
Proc. Big Data, pp.3922–3927, 2016.

[14] J. Bradbury, S. Merity, C. Xiong, and R. Socher, “Quasi-Recurrent
Neural Networks,” CoRR arXiv: 1611.01576, 2016.

[15] HTTP DATASET CSIC 2010. [Online]. Available:
http://www.isi.csic.es/dataset. [Accessed: 27-Nov-2017].

[16] S. Gupta, “Buffer Overflow Attack,” IOSR Journal of Computer Engi-
neering, vol. 1, no. 1, pp. 10–23, May-June 2012.

2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA 2018), 9 -10 March 2018, Penang, Malaysia

978-1-5386-0388-8©2018 IEEE 108

