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Abstract 
 

An accurate, fast and low-cost automated plant diagnosis system has been called for. While several studies utilizing machine learning 

techniques have been conducted, significant issues remain in most cases where the dataset is not composed of field images and often 

includes a substantial number of inappropriate labels. In this paper, we propose a practical automated plant diagnosis system. We first 

build a highly reliable dataset by cultivating plants in a strictly controlled setting.  We then develop a robust classifier capable of analyz-

ing a wide variety of field images. We use a total of 9,000 original cucumber field leaf images to identify seven typical viral diseases, 

Downy mildew and healthy plants including initial symptoms. We also visualize the key regions of diagnostic evidence. Our system 

attains 93.6% average accuracy, and we confirm that our system captures important features for the diagnosis of Downy mildew. 
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1. Introduction 

Plant diseases affect agricultural production all over the world [1-

3]. To minimize the damage and avoid secondary infection, we 

have to identify the infected plants and apply an appropriate 

treatment as soon as possible (e.g., removal of infected plants or 

pesticide application). Plant diagnosis is generally conducted 

through visual examination by experts with subsequent genetic 

testing applied as necessary, thus it is usually expensive and time-

consuming.  

In such circumstances, methodologies for automated plant diagno-

sis characterized by accuracy, speed and low costs have been re-

quested by the agricultural industry. Several studies have been 

carried out in response to such requests [4-23]. In [4] used support 

vector machines (SVM) to classify rice plant diseases and attained 

92.7% accuracy. In [5] analysed leaf and stem images of plants 

with an artificial neural network classifier. Their classifier 

achieved around 93% accuracy in classifying them into six classes 

(five diseases and a healthy state). In [7] also used an artificial 

neural network classifier and showed 87.8% in fungal disease 

diagnosis. In [12] discriminated cassava diseases in five categories 

(four diseases and a healthy state) and estimated their severity in 

five grades from healthy (= 1) to terminal (= 5). They used a com-

bination of their original feature descriptors and classifiers such as 

linear SVM. They claimed 99.98% and nearly 99% accuracy in 

disease severity estimation and classification, respectively. In [18] 

investigated six kinds of Cercospora leaf spots of sugar cane with 

an evaluation of common statistical and handmade image features. 

Their method attained 82% accuracy. These methods successfully 

established preferable performance for their own target task. 

However, since they are designed based on conventional pattern 

recognition techniques, i.e. a sequential process of (1) prepro-

cessing including segmentation, detection of the regions of inter-

ests (ROI), etc., (2) development of hand-crafted features specially 

designed for a specific task and (3) classification. Thus, they usu-

ally have constraints on their usage. 

In recent years, a new machine learning schema called deep learn-

ing has demonstrated many promising achievements in a wide 

range of industries. Convolutional neural networks (CNNs) are a 

principal aspect of deep learning techniques specialised for ma-

chine learning including computer vision. CNNs automatically 

capture efficient image features for classification from the training 

images as a part of their learning process. Due to that, they not 

only significantly reduced the need for the complicated hand-made 

processes mentioned previously but also achieved high classifica-

tion performance. Recently, several applications for automated 

plant diagnosis relying on deep learning have also been proposed 

[11, 15, 17, 20-23]. In [15] used a total of 54,306 plant leaf images 

consisting of 14 crop species and 26 diseases for a total of 38 clas-

ses of crop-disease pairs from PlantVillage [24] and built CNNs 

classifiers. Their best score reached an overall accuracy of 99.35%. 

However, all the leaves used in their study were physically 

cropped and each leaf was separately placed in front of a uniform 

colored background and photographed. The conditions are quite 

different to what we observe in the field, thus we see a noticeable 

difference in performance in practical situations. In fact, they also 

noted in their manuscript that the accuracy dropped to around 31% 

in a different setting from the training images. In addition, we 

found a significant number of inappropriate label assignments in 

the PlantVillage dataset. This is a serious problem that open da-

taset inherently has. Note that the PlantVillage dataset is not cur-

rently available to the public. In [22] analysed apple leaves for 

classifying four kinds of diseases with CNNs. They attained an 

excellent average accuracy of 97.62%. However, their study also 

used cropped leaf images, as well as the PlantVillage dataset and 

therefore these systems cannot be directly applied to practical 

situations. 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET


50 International Journal of Engineering & Technology 

 
Meanwhile, robust and practical plant diagnosis systems have 

been investigated [11, 17, 20-21]. In [20] analysed their wheat 

disease database 2017 (WDD2017 Dataset) (9,230 images consist-

ing of seven types of diseases) with a full convolutional VGG-

based [25] neural network. Their system identifies the location of 

lesion areas and performs their diagnosis simultaneously, and they 

reported the best score for mean recognition accuracy of 97.95%. 

In [21] investigated a total of 5,000 tomato field leaf images. Their 

pre-trained CNN models are combined with three types of object 

detection methods (e.g. VGG-net and Faster region-based CNN 

[26]). Their system also detects and diagnoses infected regions 

simultaneously and achieved 0.836 mean average precision (mAP) 

at maximum. We agree that these methodologies work well in 

some practical situations. 

On the other hand, there is still room for further investigations. 

The first thing that comes to mind is that it is desirable to be able 

to provide the evidence of the outcome of the system in an easy-

to-understand manner. This is an important topic from the view-

point of system reliability. The following is the limitation of sim-

ultaneous identification processes of localization and diagnosis. 

Since these systems are composed of general object detection and 

recognition methods, their final output is in the form of boundary 

boxes and associated recognition results. Accordingly, the target 

symptoms need to be locally present, i.e. they should have clear 

boundaries and thus be relatively easy to identify. In general, plant 

symptoms are highly diverse, especially when the disease is in 

early stages or when plants are infected with a virus. Symptoms of 

these cases may appear as a very tiny spot or be spread throughout 

the leaf and difficult to discern. In either of these cases, urgent 

treatment is required. To address these issues, we believe heat-

map representation is more suitable for visualization purposes in 

general. Furthermore, this representation is useful as it can be 

regarded as the evidence of automatic diagnosis. 

In the meantime, we have been aiming at developing a practical 

plant diagnosis system that can reduce the burden on farmers and 

experts [11, 17, 19]. First, we avoided using open datasets due to 

their low reliability. We built a strictly controlled field environ-

ment, cultivated the target plant and made a highly reliable dataset 

of which each datum had a confirmed diagnosis. 

In our former study [17], we formed our cucumber leaf dataset of 

which the images were photographed under various conditions, i.e. 

various backgrounds and photographic conditions as well as in-

tractable initial symptoms. The dataset was composed of a total 

7,320 cucumber leaf images (targeting seven typical viral diseases 

and a healthy diagnosis). We investigated this dataset with CNNs 

and achieved 83.2% in the four-fold cross validation strategy. We 

confirmed from this achievement that CNNs have a capability of 

diagnosing cucumber viral diseases under practical conditions. 

While this system provided classification results, there was no 

evidence of the outcome, and thus there is a need for performance 

improvement. 

In this paper, we propose a practical and accurate plant diagnosis 

system based on our extended highly reliable dataset. Our system 

accepts field images and provides evidence of the outcome in 

heat-map representation. More concretely, we used a pre-trained 

VGG-net model [15] and performed transfer learning. For visuali-

zation, we applied Grad-CAM [27] to identify important regions 

of the image to be the basis of the diagnosis that is the evidence of 

diagnosis. 

2. Methodology 

2.1. Dataset and Preprocess 

For building an accurate diagnosis system, appropriate training 

data collection is indispensable. To address this issue, a strictly 

controlled field environment was built for each disease. The target 

disease was transmitted in an isolated environment to avoid con-

tamination. The dataset was created from cucumber leaves includ-

ing seven typical viral diseases (MYSV: melon yellow spot virus, 

ZYMV: zucchini yellow mosaic virus, CCYV: cucurbit chlorotic 

yellows virus, CMV: cucumber mosaic virus, PRSV: papaya ring 

spot virus, WMV: watermelon mosaic virus, KGMMV: kyuri (= 

cucumber) green mottle mosaic virus), leaves infected with 

Downy mildew, and healthy leaves. The dataset consisted of a 

total of 9,000 leaf images (1,000 images per class). Each image 

was photographed under only one loose requirement; a leaf must 

be near the middle of the picture. Fig. 1 shows examples of images 

in the dataset. The dataset includes images of different sizes and 

aspect ratios. Therefore, the image was cropped to a square around 

its center. As for data augmentation, the same method proposed in 

the literature was used [17]. Each training image was rotated 

clockwise with the incremental step size of 20 degrees and their 

mirror image was then generated with respect to the horizontal 

axis. In summary, this process artificially increased the training 

data by 36 times. Finally, we resized the images to 224×224 pixels. 

 

 
Fig. 1: Example images in our dataset. 

2.2. Architecture 

Several studies reported that performing transfer learning on the 

pre-trained large-scale networks such as VGG-net [25], and Res-

net [28] with the transfer learning tend to give better performance 

than models developed from scratch [29]. In plant applications, 

some studies have used this strategy and showed good results [15, 

20, 23]. Therefore, a pre-trained VGG-model was used and fine-

tuned using our dataset. Our system was trained with “Caffe” deep 

learning framework [30]. Model setting and initial learning rate 

were the same as VGG-net excluding the node size of the output-

layer (i.e. from original 1000 to 9 as number of result category). 

2.3. Visualization 

As a highly reliable system, it is necessary that the system is high-

ly capable on the target task and furthermore it is also necessary to 

be able to present grounds for the diagnosis in a readable format. 

Traditionally, this problem was not easy with most machine learn-

ing approaches. With recent advancements in deep learning tech-

niques, several promising visualization techniques mainly for 

CNNs have been proposed to address this issue. 

In this study, Grad-CAM [27] was applied to see which leaf re-

gions in the input image make large impacts on the diagnosis that 

is to say it enable us to see the evidence for diagnosis visually. 

The Grad-CAM firstly calculates a gradient of the target class on 

each feature map and averages them to estimate the degree of 

importance of each map. The visualization is obtained by calcula-

tion of a weighted sum of each feature map activation with the 

importance associated with the input image. The Grad-CAM algo-

MYSV ZYMV CCVY

CMV PRSV WMV

KGMMV Downy mildew Healthy
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rithm is reasonable, and since it does not need additional specially 

designed components, it does not sacrifice execution speed. 

2.4. Experimental 

In this study, the abovementioned CNN-based classifier for plant 

disease diagnosis was built and its validity was investigated by 

visualising key regions as the basis. For classification performance, 

our system was evaluated under the 10-fold cross validation strat-

egy. For evaluation of visualization of “evidence”, we applied 

both qualitative (visual) and quantitative assessments. Here, the 

focus was more on visualising features for Downy mildew than 

others in this experiment. This is in accordance with suggestions 

from experts that the typical symptom of viral diseases appears in 

the whole area of a leaf, but is often not clearly discernible. Even 

experts cannot determine the exact location of involved areas (see 

Fig. 4 mentioned later), so visual evaluation of our results for viral 

diseases was not thought to be very reliable. In order to provide a 

quantitative evaluation of detected regions presumed to be like the 

grounds of Downy mildew, those regions were replaced with the 

mean pixel value of the training data. The transition of the classi-

fication result was investigated, while changing the replacement 

rate of the region of interest for entire Downy mildew images. 

3. Results and Analysis 

We trained and evaluated the performance of our diagnosis system 

under 10-fold cross validation. The result is summarized in Table 

1 where the right column in bold indicates the result of our pro-

posed model (VGG-based transfer learning) and the left column is 

our former CNN-model (shallow CNN model trained from 

scratch) [17]. Using VGG-based transfer learning, our model at-

tains the average 93.6% of accuracy, which is much higher than 

the scratch-CNN with 86.6% accuracy. The sensitivity of each 

disease and the specificity of our proposed model also outperform 

than the previous one. For more detail of our classification per-

formance, the confusion matrix can be found in Fig. 2. Even our 

model achieves high accuracy, there is still not a small number of 

misclassification due to the similarity of disease symptoms. The 

detail of this problem will be discussed in the next section. 

Fig. 3 and 4 are examples of estimated regions that were used as 

the basis of the diagnosis for Downy mildew and viral diseases, 

respectively. We can see examples from Fig. 3 that our method 

appropriately determines lesions on leaves infected with Downy 

mildew by visual evaluation. On the other hand, it is difficult to 

find the validity on viral diseases from Fig. 4 as mentioned. In 

general, symptoms of viral diseases often spread out to larger parts 

of the leaf. Experts diagnose them with the appearance of the 

whole leaf and they usually do not identify the exact location of 

lesions. Results observed in Fig. 4 meet the experience of experts 

and are difficult to evaluate with this quantitative method. For that 

reason, we evaluate the validity of the heat-map quantitatively 

only for Downy mildew in this study. Fig. 5 shows an (a) exam-

ples of leaves infected by Downy mildew, (b) heat-maps obtained 

from layer conv2_1 (please refer original manuscript [25] in de-

tail) and (c) images with the region of high interest replaced with 

the average leaf color. 

 
Table 1: Our diagnosis performance under 10-fold cross validation. 

Index Scratch-CNN* [%] Proposed [%] 

Accuracy 86.6 93.6 

Sensitivity of MYSV 86.3 94.3 

Sensitivity of ZYMV 86.4 92.2 

Sensitivity of CCYV 93.0 96.2 

Sensitivity of CMV 86.0 93.5 

Sensitivity of PRSV 82.3 91.7 

Sensitivity of WMV 79.0 90.8 

Sensitivity of KGMMV 81.7 90.1 

Sensitivity of Downy mildew 98.0 99.6 

Specificity 86.7 94.5 

*Scratch-CNN model is the same architecture used in [17] 

 

 
Fig. 2: Example of misclassified images due to similar features. 

Left image: actual class = KGMMV (5.4%), prediction class = PRSV 
(94.5%) Right image: actual class = CMV (17.5%), prediction class = 

healthy (80.9%) 

 
Table 2: Confusion matrix of our proposed system 

 Predicted Class 

  MYSV ZYMV CCYV CMV PRSV WMV KGMMV Downy Mildew Healthy 
A

ctu
al C

lass 

MYSV 943 4 4 14 12 7 4 1 11 

ZYMV 12 922 2 4 12 11 31 0 6 

CCYV 14 0 962 9 2 0 0 1 12 

CMV 16 0 3 935 3 9 0 6 28 

PRSV 20 19 0 3 917 6 34 0 1 

WMV 8 15 3 17 7 908 22 0 2 

KGMMV 15 35 1 5 29 12 901 0 2 

Downy mildew 0 0 0 0 2 0 0 996 2 

Healthy 2 3 6 34 0 7 2 1 945 
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Fig. 3: Example of Downy mildew and corresponding heatmaps. 

 

 
Fig. 4: Examples of viral diseased lead photograph and corresponding heatmaps. 
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Fig. 5: Examples of (a) Downy mildew leaves, (b) corresponding heat-maps and (c) with high interest regions replaced with the average pixel value of the 

training images. 
 

 

Fig. 6: The transition of the classification result for Downy mildew images 

seen while changing the replacement rate of high interest heat-map re-
gions. 

4. Discussion 

4.1. Evaluation of Classification Performance 

The performance of our proposed system achieved over 90% ac-

curacy for all diseases (Fig. 1). This is superior to our previous 

CNN model trained from the scratch. Our results support the hy-

pothesis that utilizing transfer learning is also effective for auto-

mated plant diagnosis. For Downy mildew, a typical mold disease, 

our model attained quite high accuracy (99.6%). We think this is 

because their symptoms are clearer than those of other diseases. 

Next, we would like to examine the degree of misclassification by 

getting feedback from experts. From Table 2, we can see a rela-

tively large number of misclassifications were found between: (i) 

ZYMVKGMMV, (ii) CMVhealthy, (iii) 

WMVKGMMV and WMVhealthy, (iv) PRSV KGMMV. 

Here, the source and destination of arrows indicate the true and 

incorrectly estimated label respectively. A double headed arrow 

indicates misclassification occurring in both directions. Experts 

commented on our experimental difficulties as follows: “severe 

symptoms of ZYMV, KGMMV, PRSV, MYSV sometimes show 

similar appearances to each other.” “The initial symptoms of 

KGMMV sometimes resemble that of WMV.” “For recent breed 

improved cucumbers, CMV sometimes delays their growth and 

withers leaves, but their symptoms are usually very mild.” “Most 

of initial stage of WMV yields no clear symptoms, so it is hard to 

discriminate them from healthy ones.” “In any case, viral diseases 

cause mild mosaic symptoms in young leaves and they often look 

similar each other.” According to their comments, we find most of 

the misclassifications observed in our experiments meet expecta-

tions. That is those classifications are inherently difficult not only 

for automated systems, but also for experts. Despite these difficult 

situations, our system shows very small number of misclassifica-

tion. Therefore, we think that the error is in an acceptable range. 

As for the reason of high classification performance on Downy 

mildew, the symptoms basically appear locally and most of them 

have a clear boundary except in the severe terminal stage. This 

tendency is much different from that with viral infection. Diagno-

sis of Downy mildew by humans is relatively easy compared with 

that of viral diseases. From these results, we confirmed that the 

trend of classification accuracy is similar in human experts and in 

our automated system according to the discrimination difficulty 

level. 

4.2. Evaluation of Visualization 

We confirmed from Fig. 3 that heat map intensity changes (from 

yellow to red) appear in the area considered to be mold symptom 

in many cases. We can also evaluate the validity of the displayed 

heat map area quantitatively as illustrated in Fig. 6. This figure 

shows the transition of the classification result for whole (1,000) 

Downy mildew images under 10-fold cross validation while 

changing the replacement rate of the ROIs. We can see as the 

replaced area increases, the number of Downy mildew diagnoses 

is decreased while the number of healthy diagnoses is increased. 

This trend indicates that the heat map represents the important 

local pattern allowing the system to identify diseases in the target 
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image. Thus, we conclude that our system captured characteristics 

of Downy mildew appropriately. 

However, on the other hand, some heat map responses are ob-

served from outside of the leaf region. These imply that our sys-

tem felt overfitting for training data. In order to avoid this problem, 

we primarily need to increase the number of training images with 

a much wider variety and it then might be necessary to introduce 

some mask process to eliminate or reduce the effect of out of ROI 

regions as a second option. 

In this study, we obtained heat-map representation also for viral 

diseases (Fig. 4). We believe that those results are reasonable be-

cause the heat-map is generated by the GradCAM algorithm, and 

this algorithm only depends on the combination of activation from 

each feature map of the trained classification CNNs. Our CNNs 

attained more than 90% classification accuracy for all the viral 

diseases. Still, we did not evaluate the validity of them in a quanti-

tative manner. This is because, as we mentioned earlier, the typi-

cal symptoms appear in the whole area of the leaf and are often 

not discernible even by experts. Thus, we do not have good evalu-

ation criteria that we (humans) can understand. Our experience is 

that human-oriented features are useful for our understanding, but 

utilizing only those features seriously deteriorates the performance 

of learning machines. We need to find good balance between them 

in future. 

5. Conclusion  

In this paper, we proposed an accurate and practical cucumber 

diagnosis system based on a highly reliable dataset and CNNs 

with transfer learning. Our system achieved a 93.6% classification 

accuracy on average for nine classes. We also visualized the evi-

dence of diagnosis for Downy mildew, a typical mold disease and 

confirmed the validity through both visual and quantitative as-

sessment. 
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