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Abstract—Practical automated detection and diagnosis of plant
disease from wide-angle images (i.e. in-field images containing
multiple leaves using a fixed-position camera) is a very important
application for large-scale farm management, in view of the need
to ensure global food security. However, developing automated
systems for disease diagnosis is often difficult, because labeling
a reliable wide-angle disease dataset from actual field images
is very laborious. In addition, the potential similarities between
the training and test data lead to a serious problem of model
overfitting. In this paper, we investigate changes in performance
when applying disease diagnosis systems to different scenarios
involving wide-angle cucumber test data captured on real farms,
and propose an effective diagnostic strategy. We show that leading
object recognition techniques such as SSD and Faster R-CNN
achieve excellent end-to-end disease diagnostic performance only
for a test dataset that is collected from the same population as the
training dataset (with F1-score of 81.5% – 84.1% for diagnosed
cases of disease), but their performance markedly deteriorates for
a completely different test dataset (with F1-score of 4.4 – 6.2%).
In contrast, our proposed two-stage systems using independent
leaf detection and leaf diagnosis stages attain a promising disease
diagnostic performance that is more than six times higher than
end-to-end systems (with F1-score of 33.4 – 38.9%) on an unseen
target dataset. We also confirm the efficiency of our proposal
based on visual assessment, concluding that a two-stage model is
a suitable and reasonable choice for practical applications.

Index Terms—automated disease diagnosis, wide-angle leaf
images, cucumber diseases, deep learning, object detection

I. INTRODUCTION

Plant diseases represent an enormous challenge to world-
wide agricultural production, as they account for huge crop
losses and pose a threat to global food security. It is known
that losses caused by plant diseases account for at least 10%
of global food production [1]. In addition, the United Nations
Food and Agriculture Organization (FAO) has reported that
the world’s population is expected to grow to almost 10
billion by 2050 [2], which will boost demand for agricultural
productivity. Early detection and appropriate treatment are
therefore essential in order to minimize the damage caused
by plant diseases and to ensure the yield and quality of global
food production.

In an agricultural context, the traditional method of plant
disease detection is visual observation by experts, and genetic
testing is applied if necessary, requiring a great deal of special-
ist experience and knowledge. Thus, diagnosing plant diseases

on real farms is usually time-consuming and expensive. A
timely and accurate method of plant diseases recognition is
in great demand.

In recent years have seen the successful application of a
deep learning method called convolutional neural network
(CNN) in many areas of industry. Due to the outstanding
performance of CNNs, the use of computer vision in the field
of precision agriculture has also been expanded, as it has
proven to be a good option for plant disease recognition.

Some of the early studies performed disease diagnosis based
on single-image inputs (i.e. images that typically contain one
single object). Mohanty et al. [3] performed disease recogni-
tion for 14 crop species and 26 diseases on the PlantVillage [4]
open dataset, using pre-trained deep learning models. The
highest classification accuracy was 99.4% on a held-out test
set. Liu et al. [5] collected their own apple leaf dataset
that included four common diseases, and their CNN model
successfully classified apple diseases with an overall accuracy
of 97.6%. Despite showing excellent performances, the main
drawback of these studies was that those datasets were taken
from an experimental (laboratory) setup, under relatively ideal
conditions for machine perception. That is, all the leaves were
cropped beforehand, and each leaf was photographed against
a uniform background, rather than under the real conditions
in the cultivation field. Thus, the diagnostic performance was
biased. The authors themselves stated that the accuracy of the
system greatly decreased when applied to real images from
the cultivation field.

In order to develop diagnostic systems for practical envi-
ronments, several deep learning-based techniques have been
also investigated. Kawasaki et al. [6] trained a simple but
effective CNN model for the in-field classification of two
cucumber diseases and healthy leaves. In another study of
cucumber disease, Fujita et al. [7] customized a pre-trained
VGG-net [8] to classify seven types of cucumber disease
and one healthy from on-site cucumber leaf images under
various photographic conditions. They reported an average
accuracy of 82.3% using a 4-fold cross-validation strategy.
Tani et al. [9] designed a smaller version of the VGG-net
that could classify multiple-disease infections. Their system
attained an average accuracy of 95.0% in the classification
of 13 combinations of infections with multiple diseases on a
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Fig. 1. Overview of the end-to-end and two-stage strategies (red and white boxes indicate disease and healthy leaves, respectively).

practical cucumber dataset. Ramcharan et al. [10] developed a
cassava leaf diagnosis system that was available for ordinary
mobile phones, and achieved an average accuracy of 80.6% for
different stages of three diseases. Even though the proposals
mentioned above were practical, one major issues with these
studies is their inconvenience for application to large-scale
field images, since these systems accept only single-leaf input
images.

Several sophisticated end-to-end systems from wider-area
agricultural images have been proposed to alleviate this practi-
cal problem, and most of these techniques are based on recent,
powerful, CNN-based real-time object detection methods such
as Faster R-CNN [11] or the single shot multibox detector
(SSD) [12]. Baweja et al. [13] used Faster R-CNN to count
plant stalks and calculate the stalk width from on-site images.
Faster R-CNN has also been utilized to localize the plucking
points of tea leaves [14] to support automated tea harvesting.
Fuentes et al. [15] trained three different CNN architectures
for the real-time localization and diagnosis of tomato diseases.
They attained a maximum mean average precision of 86.0% in
the diagnosis of a total of nine types of tomato diseases and
pests. They also proposed a CNN filter bank to reduce the
false positive rate for the detection of tomato diseases caused
by the data class imbalance problem [16]. They reported
a mean average precision of 96.0% for nine diseases and
one physiological disorder diagnosis for tomatoes. In another
study on the diagnosis of in-field wheat diseases, Lu et
al. [17] designed an end-to-end diagnosis system for wheat
by applying fully convolutional neural networks, and reported
a mean recognition accuracy of 98.0% for the classification of
seven classes (six diseases and healthy class).

Although these proposals demonstrated the excellent adapt-
ability of the deep learning approach in terms of performing
plant disease detection and diagnosis from real scenario im-
ages, most of these systems were designed to diagnose a lim-
ited number of targets (e.g. up to a dozen), meaning that there
are still limitations when applying these methods to large-
scale farm environments. A system that can accurately detect
and diagnose diseases from wide-angle images is extremely
important in order to support agricultural practice.

However, based on our experience, it is not easy to develop a
practical plant disease diagnosis system for wide-angle images.

There are two major problems that need special attention. The
first problem is the overfitting that arises due to the latent
similarities between the training and test images, even though
they were exclusive to each other. This typically happens
when images photographed in the same field are divided into
training and test sets. This scenario is commonly seen (i.e.
performance evaluation is done using cross-validation), and
the diagnostic performance on real unseen data is usually
significantly reduced. To make matters worse, this problem is
predicted to be more serious when wide-angle images are used,
because the same or similar objects may appear in different
images.

The second problem is the labor cost and the required
accuracy of the gold standard assignment. When an end-to-
end diagnosis system is built, numerous training images with
a huge number of bounding boxes are required, along with the
appropriate disease labels. Moreover, there are innumerable
objects in the images such as overlapping leaves, and their
resolution is often insufficient, making it very difficult to label
each object with an appropriate ground truth.

Currently, there are very few attempts to diagnose plant dis-
eases from in-field wide-angle images. Cap et al. [18] were the
first to propose a cucumber diagnosis system using wide-angle
on-site images. They developed a two-stage system consisting
of two CNNs that performed leaf detection and leaf diagnosis
independently. Their system was evaluated under practical
settings and achieved a reasonable performance. However, they
have not tested their system on images taken from different
environments (e.g. different farms) nor compared with other
state-of-the-art end-to-end techniques (e.g. Faster R-CNN or
SSD).

Nevertheless, we believe that a two-stage diagnosis system
such as the one in [18] has several advantages that can
overcome the issues on developing practical plant disease
diagnosis system for wide-angle images. Firstly, two-stage
systems have the detection stage and the diagnosis stage
separately; thus, labeling of the bounding boxes of the objects
(i.e. leaves, fruits) to be detected is easy, since it does not
require disease-specific knowledge and can be done by non-
experts. Secondly, labeling a single object or collecting labeled
single-object images is much simpler than for wide-angle
images, as mentioned above. The diagnosis stage therefore
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could be trained with a wider variety of data, boosting the
robustness of the two-stage system when new types of data
are encountered. In this paper, we examine the difficulties
involved in realizing the automatic diagnosis of plant diseases
using practical wide-angle images and propose a suitable
configuration for this problem.

II. MATERIALS AND METHODS

We examine and compare two types of diagnosis strategy
for practical wide-angle cucumber images in terms of disease
diagnostic performance under different evaluation environ-
ments. Fig. 1 shows an overview of the two different types of
diagnosis strategy. The first approach is an end-to-end strategy,
which simultaneously performs leaf detection and diagnosis
based on a sophisticated object detection framework such as
the SSD or Faster R-CNN. The second approach is a two-
stage strategy that performs these functions separately. In this
study, we carry out diagnosis using these strategies in order to
estimate whether each leaf in a wide-angle image is healthy or
diseased. The reason for using only two diagnostic classes is
that it is difficult to assign gold standard labeling to wide-angle
images, as described earlier. For both systems, we compare the
final diagnostic performance between a test dataset from the
same farm and datasets from different farms. This comparison
is to examine the effect of the latent similarities between the
training and test datasets on the final diagnostic performance.
We then discuss which approach is more suitable for real
cultivation conditions.

A. Datasets

In this work, we use the following two datasets to explore
suitable configurations for automatic wide-angle diagnosis of
plant disease.

1) Wide-angle dataset: A total of 963 wide-angle images
of cucumbers were acquired from several farms, using various
digital cameras. Each wide-angle image contained numerous
cucumber leaves that overlapped each other and was taken un-
der different light conditions (see Fig. 1–3 for sample images).
The images contained a total of 24,565 leaves, of which 16,924
were healthy and 7,641 were diseased. All of the wide-angle
images were annotated by experts, and bounding boxes were
created for each leaf. We randomly divided the images, using
90% (867 wide-angle images containing 15,369 healthy and
6,827 diseased leaves) for training, and the rest for testing (96
wide-angle images containing 1,555 healthy and 814 diseased
leaves). We refer to these sets of images as the wide-angletrain
and the wide-angletest datasets, respectively.

In order to evaluate the end-to-end systems and the two-
stage systems equally, we prepared 51 wide-angle cucumber
images taken from completely different farms. A total of
1,829 single leaves (of which 820 are healthy and 1,009
diseased) were also annotated by experts. We used this dataset
only for the final diagnostic test and refer to it here as the
wide-angleunseen dataset.

Our wide-angle images mainly had two aspect ratios, 2:3
and 3:4, and the typical resolution of these images was

between 12 and 20 megapixels. They were resized to either
512×512, 600×900 or 600×800 pixels, depending on the
architecture of the end-to-end models (as described in more
detail in the experimental section).

2) Single-leaf dataset: The single-leaf dataset was used for
training the diagnosis stage of the two-stage systems. From
the 867 images in the wide-angletrain dataset, we cropped all
the gold standard bounding boxes (a total of 22,196 images,
15,369 healthy and 6,827 diseased), each containing one
cucumber leaf, to form the dataset. We refer this dataset as
the single-leafcropped dataset. In addition, we combined these
images with another set of single-leaf images collected from
Saitama Agricultural Technology Research Center, Japan.
Note that these images were not included in the above-
mentioned wide-angle dataset. This formed the single-leafall
dataset, which contains 50,000 images of single cucumber
leaves (25,000 healthy and 25,000 diseased).

The reason for building this larger single-leafall dataset is
to verify the advantages of the two-stage systems, as hy-
pothesized earlier in the introduction. The end-to-end systems
only accept annotated leaf regions in wide-angle images in
the training set, while the two-stage systems could include
additional single-leaf images in the training of the diagnosis
stage. Note again that the acquisition of labeled single-leaf
images is much easier than from wide-angle images. We
believe that adding a variety of single-leaf images to the
dataset can improve the robustness of the diagnostic model.
The resolution of the single-leaf dataset was normalized to
224×224 pixels.

B. Wide-angle plant diagnosis systems

1) End-to-end systems: We first built our end-to-end sys-
tems using the SSD512 and Faster R-CNN models. The
input image size was resized to 512×512 pixels for the SSD
model, while for the Faster R-CNN, we resized the input
images to sizes 600×900 or 600×800 pixels, corresponding
to images with aspect ratios of 2:3 or 3:4. The backbone of
these models was basically the VGG-16 [8] model pre-trained
with the ImageNet dataset [19], and they were fine-tuned
with the wide-angletrain dataset. The diagnostic performance
of the end-to-end systems was evaluated and compared on the
wide-angletest and wide-angleunseen datasets.

2) Two-stage systems: A two-stage system is a combination
of a leaf detection stage and a leaf diagnosis stage. In the leaf
detection stage, we used the above end-to-end systems (i.e.
SSD512 or Faster R-CNN) as the leaf detectors to enable an
unbiased comparison. In the subsequent leaf diagnosis stage,
the detected leaves were diagnosed using an additional CNN
model called DiagNet. We used the CNN model proposed
in [18] for the performance comparison. This network was
also a fine-tuned version of the pre-trained VGG-16 network
with two outputs, i.e. healthy or diseased. Our DiagNet model
accepts a color image with a size of 224×224 pixels. In this
work, we froze the first ten convolutional layers and fine-
tuned the last six layers (three convolutional and three fully-
connected layers).
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TABLE I. PERFORMANCE COMPARISON BETWEEN END-TO-END AND TWO-STAGE SYSTEMS ON THE WIDE-ANGLETEST DATASET

Leaf detector performance Leaf disease diagnostic performance

Healthy Disease
F1-score [%] Precision [%] Recall [%] F1-score [%] Precision [%] Recall [%] F1-score [%] Precision [%] Recall [%]

Average
F1-score [%]

End-to-end 87.8 88.1 87.5 84.1 81.4 86.9 86.0
Two-stage (DiagNetall) 82.6 88.0 77.9 73.2 62.8 87.6 77.9SSD512

Two-stage (DiagNetcropped)
91.5 89.8 93.3

84.6 86.0 83.3 79.1 75.0 83.7 81.9

End-to-end 85.2 82.8 87.8 81.5 78.7 84.6 83.4
Two-stage (DiagNetall) 80.8 81.5 80.1 75.1 68.3 83.5 78.0Faster R-CNN

Two-stage (DiagNetcropped)
90.4 86.7 94.4

82.8 81.6 84.1 77.7 73.2 82.9 80.3

The red and blue colors indicate the best performance of the end-to-end and two-stage systems on the wide-angletest dataset, respectively.

Fig. 2. Final diagnostic result of two diagnosis strategies on the wide-angletest dataset. The first row represents the ground-truth images, and the second and
third rows indicate the results of the end-to-end SSD512 system and the two-stage system with DiagNetall, respectively. Note that the red and white boxes
show diseased and healthy cases, respectively.

For experimental purposes, we trained two versions of the
DiagNet model for performance comparison. The first model,
named DiagNetcropped, was trained only on the single-leafcropped
dataset (22,196 images), while the other, called DiagNetall,
was trained on the single-leafall dataset (50,000 images).

The diagnostic performance of the two-stage systems was
also evaluated and compared using the wide-angletest and
wide-angleunseen datasets.

3) Training wide-angle plant diagnosis systems: To train
the end-to-end systems, the Faster R-CNN and SSD512
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models were fine-tuned using the wide-angletrain dataset. We
followed the training strategy used in the original Faster R-
CNN and SSD papers, fine-tuning the models using stochastic
gradient descent (SGD) with momentum [20] with an initial
learning rate of 10−3 a momentum of 0.9, and a weight decay
of 0.0005. The mini-batch size was set to one to train the
Faster R-CNN and 16 to train the SSD512. The training was
terminated after 50,000 iterations.

For the two-stage systems, the DiagNetcropped and DiagNetall
were trained on the single-leafcropped and single-leafall datasets,
respectively. During the training, we applied augmentation on
the fly, using horizontal and vertical flipping, and random 90
degrees rotations. We used the SGD momentum optimizer with
the same hyper-parameters when training both the end-to-end
systems and our two-stage models. The minibatch size was
set to 256, and we terminated the training process after 30
epochs.

III. EXPERIMENTAL RESULTS

We compare the diagnostic performance of the two different
diagnosis strategies for the wide-angle pictures taken on the
same farm and those from different farms. Again, it should
be noted here that the purpose of this experiment is to find
a suitable configuration for practical systems based on this
comparison. More specifically, we clarify the effect of the
latent similarities in the dataset, and propose a suitable solution
to this problem. In this experiment, diagnosis bounding boxes
with an intersection over union (IoU) ≥ 0.5 which correspond-
ing to the ground-truth label are regarded as correct detection
results. We use the evaluation criteria of precision, recall and
F1-score for both healthy and diseased cases, and calculate
the average diagnostic F1-score by averaging the F1-scores of
the healthy and diseased leaves as an indicator of the overall
diagnostic performance.

1) Experiment 1: Diagnosing the wide-angletest dataset:
Table I shows a comparison of the performance in terms of
leaf detection and leaf diagnosis on the wide-angletest dataset
(96 images, containing 1,555 healthy and 814 diseased leaves).
These results show that the best leaf detection performance
is achieved by SSD512 with an F1-score of 91.5%, which
is slightly better than the Faster R-CNN with 90.4%. The
diagnostic results show that the end-to-end systems give better
performance on diagnosing diseased leaves compared to the
two-stage systems. The best average diagnostic F1-score is
86.0% for the SSD512, while the best result for the two-stage
systems is 81.9% for the DiagNetcropped using SSD512 as the
leaf detector. The overall ranking indicates that of the end-to-
end systems, the SSD512 performed slightly better than the
Faster R-CNN. For the two-stage systems, the DiagNetcropped
achieved higher results than the DiagNetall using both SSD512
and Faster R-CNN as the leaf detectors. We should note here
that the DiagNetall was trained with a much larger leaf image
dataset (roughly 2.3 times larger than the DiagNetcropped), but
the performance was consistently lower.

Fig. 2 shows some examples from this experiment. The first
row represents the ground truth images, while the second and

third rows represent the results from the end-to-end and two-
stage systems, respectively. The red and white boxes indicate
diseased and healthy leaves, respectively. Based on the results,
it can be seen that although there is a slight difference in the
performance for the two types of system, both the end-to-end
and two-stage systems can correctly diagnose almost all leaf
locations, giving reasonable diagnostic performance.

2) Experiment 2: Diagnosing the wide-angleunseen dataset:
Table II shows a comparison of the performance of leaf
detection and diagnosis for the wide-angleunseen dataset, which
contains 51 images (820 healthy and 1,009 diseased leaves).
Again, these images were taken in a completely different
environment from the above wide-angletest dataset.

The leaf detection performance for these unseen images was
significantly reduced with respect to the recall, but both SSD
and Faster RCNN maintained a very high value of precision
(94.4 – 96.1%). From a practical point of view, this can be
considered reasonable, since we still can detect most leaves
precisely. The best leaf detection performance in this case is
achieved by the Faster R-CNN model, with an F1-score of
54.2% as compared to the SSD512 with 51.8%. The final
diagnostic performance was totally dissimilar from the pre-
vious experiment, as showed in Table I. Although all systems
showed a considerably reduced diagnostic performance, the
two-stage systems outperformed the end-to-end systems. The
best average diagnostic F1-score for the two-stage systems is
37.3% for the DiagNetall, while the best end-to-end system is
the Faster R-CNN diagnostic system with only 20.7%. It is
notable that both the SSD512 and Faster R-CNN end-to-end
systems were almost unable to detect the locations of diseased
leaves, with a very low F1-score of 4.4 – 6.2%.

In contrast, the two-stage system (DiagNetall) achieved
much higher recall and precision for the diseased cases, at-
taining F1-score of 33.4 – 38.9%. The diagnostic performance
of DiagNetall was also well balanced between the healthy and
diseased cases. Along with that, the DiagNetcropped still attained
a desirable result in terms of diagnosing disease, even with a
smaller set of training data. The overall performance ranking is
opposite to that in the previous experiment, with the best result
achieved by DiagNetall, the second best by DiagNetcropped, and
the lowest by the end-to-end systems.

Fig. 3 shows typical examples of the final diagnostic results
for the wide-angleunseen dataset. As mentioned above, the end-
to-end systems typically failed to diagnose the positions of
diseased leaves, while the two-stage systems could correctly
identify the important locations of diseased leaves for an
unseen dataset, outperforming the end-to-end systems.

IV. DISCUSSION

We investigated changes in diagnostic performance by ex-
perimenting with different practical scenarios, and have shown
that the final diagnostic performance varies greatly depending
on whether the test data form part of the whole dataset (Table
I; Experiment 1) or a completely different dataset (Table II;
Experiment 2). The results of both experiments indicated that
the end-to-end systems were overfitted to the wide-angletrain
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TABLE II. PERFORMANCE COMPARISON BETWEEN END-TO-END AND TWO-STAGE SYSTEMS ON THE WIDE-ANGLEUNSEEN DATASET

Leaf detector performance Leaf disease diagnostic performance

Healthy Disease
F1-score [%] Precision [%] Recall [%] F1-score [%] Precision [%] Recall [%] F1-score [%] Precision [%] Recall [%]

Average
F1-score [%]

End-to-end 34.5 39.4 30.7 4.4 66.7 2.3 19.5
Two-stage (DiagNetall) 36.2 53.9 27.2 33.4 81.2 21.0 34.8SSD512

Two-stage (DiagNetcropped)
51.8 96.1 35.5

35.4 44.1 29.6 17.4 80.6 9.9 26.4

End-to-end 35.1 38.2 32.4 6.2 84.6 3.2 20.7
Two-stage (DiagNetall) 35.6 53.2 26.7 38.9 79.9 25.7 37.3Faster R-CNN

Two-stage (DiagNetcropped)
54.2 94.4 38.0

34.7 40.4 30.4 15.9 75.0 8.9 25.3

The red and blue colors indicate the best performance of end-to-end and two-stage systems on the wide-angleunseen dataset, respectively.

Fig. 3. Final diagnostic results of two strategies on the wide-angleunseen dataset. The first row shows the ground-truth images, while the second and third
rows indicate the results of the end-to-end Faster R-CNN system and the two-stage system with DiagNetall, respectively. The end-to-end system completely
failed to detect the diseased leaves, while the two-stage system correctly diagnosed the important leaf locations in the unseen dataset.

dataset. The end-to-end Faster R-CNN and SSD512 models
showed very high performance for disease diagnosis on the
wide-angletest dataset (F1-score 81.5 – 84.1%) but extremely
poor performance on the wide-angleunseen dataset (F1-score
4.4 – 6.2%). The primary reason for this huge gap is the

large latent similarities between the training and test data
(i.e. there is a high possibility that the same or a similar
object appears in the wide-angle images in the same field.). In
addition, collecting a sufficiently large and reliable wide-angle
training dataset is difficult even for experts, because the leaf
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objects that need to be labeled are often small, with unclear
appearance. This limits the scalability of the system, leading to
non-generalization to the unseen dataset. In this case, the end-
to-end systems are not the best choice for practical automated
disease diagnosis.

In contrast, although the two-stage systems attained a
slightly lower F1-score than the end-to-end systems in Exper-
iment 1, they showed superior performance in diagnosing dis-
ease cases from the wide-angleunseen dataset, which represented
a more practical scenario in Experiment 2 (with an F1-score
of 33.4 – 38.9% compared to 4.4 – 6.2% for the end-to-end
systems). We also showed that even when we used only the
cropped single-leaf images from the same training dataset (i.e.
single-leafcropped dataset is cropped from the wide-angletrain
dataset) as in the end-to-end systems, DiagNetcropped still
achieved better results for diagnosing an unseen disease, with
an F1-score ranging from 15.9% to 17.4%, thus confirming
the effectiveness of the two-stage strategy in real situations.

We achieved these results thanks to the advantages of the
training method in the two-stage strategy. First, the leaf diag-
nosis stage in a two-stage system accepts single-leaf images
as input, and can be trained with a wide variety of data.
Following this, the collection of single-leaf images for the
disease classifier is much more straightforward than for end-
to-end systems (i.e. wide-angle images). These two properties
therefore contribute to improving the generalization of the two-
stage systems and increasing their scalability.

In general, although the detection of the location of a
diseased leaf is very important, it is unnecessary to accurately
detect and diagnose all the leaves. Once the areas of diseased
leaves are detected, further inspection can be applied to the
nearby locations, since plant diseases often spread outwards
from a given area. In this context, a two-stage system is a
suitable choice for the diagnosis of plant diseases from wide-
angle images in practical situations.

V. CONCLUSION

In this paper, we have explored the difficulties of estab-
lishing practical plant disease diagnosis systems for wide-
angle images, and have compared two diagnosis strategies
to solve these issues. Our experiments demonstrate that even
sophisticated end-to-end systems such as Faster R-CNN and
SSD still fall into overfitting and cannot achieve the desired
performance for an unknown dataset. On the other hand,
although they require further improvement, our two-stage
systems attained promising disease diagnosis performance for
the unseen target dataset.

These results show that it is preferable to use two-stage
systems due to the greater ease of collecting training data
and assigning ground-truth labels, and due to the performance
improvement they give. In future work, we intend to improve
our models with data on more types of disease to give better
performance.
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image-based plant disease detection,” Frontiers in Plant Science, vol. 7,
p. 1419, 2016.
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