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Abstract—Several researchers investigated automated diagno-
sis for malignant melanomas as known as the worst skin cancer.
Those systems, however, only provide final discrimination results
but not related information such as their substantial reasons
and therefore reliability of the system still remain an open
issue. In this paper, we developed a new melanoma screening
system based on an adaptive fuzzy inference neural network
(AFINN). Our new system provides not only final discrimination
result but also its grounds in easy-to-read fuzzy if-then format.
QOur system developed 88 fuzzy rules in consequence of the
learning of 1148 dermoscopy images and in the classification, it
provides both of the final result and its constituent rules. Based
on only developed rules, our system achieved a sensitivity of
81.5% and a specificity of 73.9%. Since it is almost equivalent
to expert dermatologists’, we consider the developed rules are
reasonable and this supplemental information improves overall
system reliability.

Index Terms—dermoscopy, melanoma, fuzzy neural network

I. INTRODUCTION

Malignant melanoma is the worst skin cancer. If patients
have an advanced melanoma, their five-year survival rate is
reported as around 10% [1]. While, on the other hand, early-
stage melanoma can be cured in many cases, particularly
before the metastasis phase. For example, patients with a
melanoma less than or equal to 0.75 mm in thickness have a
good prognosis and their five-year survival rate is greater than
93% [2]. Therefore, early detection is crucial for the reduction
of melanoma-related deaths. However, discrimination between
early stage melanomas and nevi is often difficult even by expert
dermatologists.

Dermoscopy [3], a non-invasive skin imaging technique,
and diagnosis scheme using it, such as the ABCD rule [4]
and the 7-point checklist [5] were introduced to improve the
diagnostic accuracy. However, dermoscopic diagnosis is often
subjective and is therefore associated with poor reproducibility
and low accuracy especially in the hands of inexperienced
dermatologists. Despite the use of dermoscopy, the accuracy
of expert dermatologists in diagnosing melanoma is estimated
to be about 75-84% [6], [7].

In such backgrounds, automated analysis techniques to
overcome above mentioned problems have been reported [8]-
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[16]. Table I summarizes some typical preceding studies.
Note that each of them was established based on different
dataset and therefore diagnosis accuracy cannot be compared
simply. Rubegni et al. [8] achieved a sensitivity (SE: melanoma
detection accuracy) of 94.3% and a specificity (SP: nevus
detection accuracy) of 93.8% on 350 cases of nevi and 200
cases of melanoma using an artificial neural network (ANN)
with 48 image features. Celebi et al. [13] selected 18 image
features from 476 cases of nevi and 88 cases of melanomas and
developed a support vector machine classification model with
a radial basis function (RBF) kernel. Their classifier achieved
a SE of 93.3% and a SP of 92.3%. Tenenhaus et al. [15]
analyzed 195 cases of nevi and 32 cases of melanomas and
achieved SE of 95% and SP of 60% based on only three image
features using the kernel logistic partial least square regression
technique. Similarly, Zho et al. [16] achieved SE of 82.1%
and SP of 86.3% based on only 4 symmetrical image features.
For the past almost ten years we have been developing an
Internet-based melanoma screening system [10] (available at
http://dermoscopy.k.hosei.ac.jp) Using an Internet connection
anyone who has a dermoscopy image can use our screening
system from anywhere in the world. The latest version of our
system achieved 85.9% of SE and 86.0% of SP on a set of 1258
non-acral dermoscopy images (1060 melanocytic nevi and 198
melanomas) [14] and 93.3% in SE, 91.1% in SP on a set
of acral volar 199 dermoscopy images (169 melanocytic nevi
and 30 melanomas) [17] using an ANN and linear classifier,
respectively.

Although some of these automated techniques showed
superior classification performance to expert dermatologists
on a simple numerical evaluation, those techniques cannot
supersede physicians in current situation due to several reasons.
The primary cause is associated with the system reliability.
Most of conventional systems have developed based on limited
number of images (see Table I) because it is usually difficult for
researchers to prepare large dataset with established diagnosis.
From an another point of view, present automated systems only
provide final discrimination results but not related information
such as their substantial reasons, degree of confidence etc.
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TABLE I
COMPARISON OF CLLASSTFICATION PERFORMANCE OF PRECEDING STUDIES

18] 9] [107* [11] [12] [13] [147* [15] [16]

Year 2002 2004 2004 2005 2005 2007 2008 2010 2012
Author Rubegni et al | Blum etal | Okaetal | Seidenari et al | Menzies et al | Celebi et al | Iyatomi et al | Tenenhaus et al | Zho et al

SE (%) 94.3 83.3 87.0 87.5 91 92.3 85.9 95 82.1

SP (%) 93.8 86.9 93.1 85.7 65 93.3 86.0 60 86.3

classifier ANN Logistics Linear Linear Logistics SVM ANN KL-PLS SVM

# melanomas 217 84 77 95 382 88 198 32 88
# nevi 371 753 188 364 2048 476 1060 195 263

* available via Internet (http://dermoscopy.k.hosei.ac.jp)

Since target users of current systems are inexperienced derma-
tologists or physicians with other expertise, they need detailed
information that support their decision, i.e. diagnosis.

In the meantime, fuzzy neural networks (FNNs) such as
ANFIS [18] combines both advantages of the fuzzy systems
and the learning ability of the neural network. These techniques
alleviate the issues of fuzzy modeling by means of the learning
ability of neural networks. More concretely, FNNs develop
fuzzy if-then rules automatically during their training phase
and make an inference based on these rules.

In this study, we developed a new melanoma screening
system based on a adaptive fuzzy inference neural network
(AFINN) [19]. AFINN has a simple structure and capability
of high dimensional data. In the learning phase of AFINN,
it develops fuzzy if-then rules relevant to melanoma dis-
crimination automatically. When our system receives the test
dermoscopy image in practical usage, the system presents not
only classification result but also applied fuzzy if-then rules to
yield the result as the grounds for “diagnosis”.

II. MATERIAL AND METHOD

Fig.1 shows the schematics of our new melanoma screening
system. Our system consists of following four components: (i)
tumor area segmentation, (ii) feature extraction, (iii) feature
selection, and (iv) AFINN. From an operation view, our system
has two phases: (1) training phase and (2) classification phase.

In the training phase, image features for training were
extracted from each training dermoscopy image using the
components (i)-(iii) and AFINN develops fuzzy if-then rules
for melanoma classification based on them in (iv).

In the classification phase, tumor area of the test der-
moscopy image is segmented out by the component (i) and
then only requisite image features were extracted (ii)-(iii) and
finally, AFINN performs a fuzzy inference with only the fuzzy
rules developed in the training phase (iv). In the following
subsections, we explain each step briefly.

A. Material

In this study, we used a total of 1148 dermoscopy images
contained 980 benign nevi and 168 melanomas. The break-
down is followings. 1) 188 Clerk nevi, 56 Reed nevi, 75
melanomas including 23 melanomas in sifu from Universities
of Naples and Graz. 2) 288 nevi and 15 melanomas from Keio
University. 3) 448 nevi and 78 melanomas from University
of Vienna. These results were determined by a pathological
examination or agree of diagnosis by several dermatologists.
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Fig. 1. Schematics of our melanoma screening system.

B. Tumor area segmentation

The accuracy of diagnosis for a tumor depends greatly on
the accurate extraction of the tumor area. We extracted the
tumor area using our “dermatologist-like” tumor extraction
algorithm [20] that combines both pixel-based and region-
based methods and utilizes a region-growing method that
aims to bring the automatic extraction results closer to those
determined by dermatologists. The segmentation algorithm
comprises four phases: (1) initial tumor area decision, (2)
regionalization, (3) tumor area selection, and (4) region-
growing. In our previous research, we confirmed the algorithm
to be highly accurate in that the extracted areas were almost
equivalent to those determined by dermatologists.

C. Feature extraction

After tumor areas were determined, we extracted a total
of 282 features from tumor body, periphery, and associated
surrounding normal skin. Those are categorized into color,
border, symmetry and texture with reference to diagnosis
schema used in clinical. We present those breakdowns in
follows.

1) Color-related features: As color-related features, a total
of 140 parameters were calculated: minimum (min), aver-
age (ave), maximum (max), standard deviation (S.D.), and
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skewness (skw) values in the RGB and HSV color spaces,
respectively for the tumor area (T), periphery of tumor area
(P), difference between the surrounding normal skin and tumor
area (S-T), and difference between the surrounding normal skin
and periphery of tumor area (S-P), (subtotal: 5 x 6 x 4 = 120
features). In addition, (i) the average color of surrounding skin,
(ii) average color difference between the peripheral and inside
of the tumor in the RGB and HSV color channels, respectively
(subtotal: 6 x 2 = 12), and (iii) the number of colors (#C)
in the tumor and its peripheral area in the RGB and HSV
color spaces quantized into 8 and 163 colors, respectively as
a polychrome features (subtotal:2 x 2 x 2 = 8) were calculated.
Note that the peripheral part of tumor is defined as the region
of the border that has an area equal to 30% of the tumor area
as determined by a recursive dilation process applied to the
outer border, working inward from the border of the extracted
tumor.

2) Border-related features: As border-related features, a
total of 4 parameters were calculated. The tumor area was
divided into eight equi-angle regions. In each region, the ratio
of the color intensity inside and outside of the tumor and the
gradient of intensity were calculated in the blue and luminance
channels (ratioy, ratioy, grady, grad;) respectively.

3) Symmetry-related features: A symmetry-related fea-
tures, a total of 26 parameters were calculated. We designed 6
intensity threshold values § from 100 to 250 with a stepsize of
30. In the extracted tumor area, thresholding was performed
and the areas whose intensity was lower than the threshold
were determined. From each such area, we calculated 8 fea-
tures: area ratio to the original tumor size (area?®), circularity
(circ®), differences of the center of gravity between original
tumor (A%, AY), standard deviation of the distribution (03, o))

4) Texture-related features: As texture-related features, a
total of 112 parameters were calculated. We prepared 7 co-
occurrence matrices with distance value ranging from 1/4 to
1/32 of the major axis of tumor object with a step ratio of v/2.
Based on each co-occurrence matrix, energy, moment, entropy,
and correlation were calculated in four directions (0, 45, 90 and
135 degree).

D. Feature selection

Feature selection is very important in terms of robustness
of the classification, readability of the created if-then rules,
calculation cost and so on. Since a classifier having high
correlation parameters brings on serious problems so called
multi-collinearity, we firstly investigated correlation between
every possible combinations of two parameters and deleted
one of them where their correlation higher than the threshold
& . We repeated this procedure until correlation between any
two parameters were less than & .

Considering the classification boundary shape of the classi-
fier is also important for feature selection. AFINN develops
ellipse hyperplanes as classification boundaries, similar to
the one developed by a support vector machine (SVM) [21]
classifier with the radial basis function kernel. In this study,
therefore, we used feature selection method used in SVM

Input/Output Rule
Layer wij, 0y Layer
u; B
: / (O |1
Input u; .
part

TS
Y14

Output Yk @ iy
part :
ynse @...Membership
function a;j
"
(a) (b)

Fig. 2. (a) Structure of AFINN and (b) its membership function.

model [22]. SVM satisfies both of high classification accuracy
and calculation speed by means of kernel trick which maps
input data space to higher dimensional space. The shortest
distance between classification boundary and its constituent
data points (i.e. support vectors) is called as the margin and the
classifier with larger margin is generally considered as more
reliable and robust over impediments. Therefore this feature
selection method stands on the idea that if tentative elimination
of arbitrary feature shows little impact on the margin size,
the feature makes little influence for the classification and
therefore can be eliminated. In this study, we firstly developed
SVM with all image features (after elimination of highly
correlated features) and deleted features one by one using
following scheme. In each elimination step, each feature is
temporarily eliminated by rotation and its impact for the
margin of the classification boundary is investigated. If the
image feature has the smallest impact on the margin among
tested features and is less than the threshold 8,,,, = 0.2, we
regard this feature as not important and therefore eliminated.

Repeat this elimination step until the number of the features
becomes constant. Finally, we trained AFINN with remaining
features.

E. Adaptive fuzzy inference neural network

1) Structure of AFINN: Fig. 2 shows the structure of
AFINN. It consists of two layers. One is the input-output (I/O)
layer and another is the rule-layer. The 1/O layer consists of
the input-part and the output-part. Each node in the rule-layer
represents one fuzzy rule. Weights from the input-part to the
rule-layer and those from the rule-layer to the output-part are
fully connected and they store fuzzy if-then rules. Membership
functions as premise part are expressed in the weights. Each
weight from the rule-layer to the output-part corresponds to
the estimated value of each rule. In short, the weights from
the input-part to the rule-layer indicate if-parts of fuzzy if-then
rules and those from the rule-layer to the output-part indicate
then-parts. The shapes of membership functions are adjusted
automatically in the learning phase.
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2) Behavior of AFINN: Suppose that the number of neu-
rons in the input-part, which is equal to the dimension of the
input data, is N1, the number of rules is N5, and the number
of neurons in the output-part, which is equal to the dimension
of the output data, is N3. The input data to the AFINN is
expressed as follows:

U:{U1,U2,... (l)

The subscripts 4,j, and k refer to the nodes in the input
part, those in the rule-layer, and those in the output-part,
respectively. Fig. 2(b) shows an example of a membership
function. The bell-shaped membership function represents the
if-part of fuzzy rule, which is placed between the ith input node
and the jth node in the rule-layer. The membership function

is expressed as
Hij = €Xp < ) ai:(172a---7N1):j:(1723---7N2)
2

where p;; is the membership value, w;; and o;; are the center
and width of the membership function respectively, and are
adjusted using the steepest descent method in the parameter
estimation phase.

In the rule-layer, AFINN calculates the degree of the rule
as follows:

y Ug,s "'7UN1}'

(ui — wij)*

2
T

1/Nadj

Ny
Pj = H Hij 3)
i
Here, N,q; is the compensated factor in attempt to high
dimensional data. Then, the inference result of the kth node
in the output part is calculated by the following equation:
"

i (wikps)

N.
Zj ’pj
where wjy, is the weight between the jth node in the rule layer
and the kth node in the output-part. The wj; corresponds to
the estimated value of the jth rule for the kth node in the

output-part. The logical form of the jth fuzzy if-then rules is
given such as

k=(1,2,...,N3) )

if (751 is Hij and Us is H2j and ... UN, is KN, j
then yy is wjpg.

3) Learning of AFINN: AFINN adjusts parameters such as
wij, 045, Wjp, using the steepest descent method and it derives
fuzzy if-then rules automatically. Please refer original article
[19] in detail. In this study, input vector U consists of image
parameters extracted and selected from dermoscopy images
and output vector Y is scalar value (this time N3 = 1) and
assigned as 0 or 1 for benign or malignant cases, respectively.

III. RESULTS

A. Feature selection

Elimination of highly correlated image features with thresh-
old ¢ reduced the number of features to 109 from the original
282. Note that we determined £ = 0.9 by preliminary experi-
ments.
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TABLE I
SELECTED FEATURES

No. Description Addr.
1 Minimum green value inside the tumor min;l;
2 Minimum red value in the periphery minf,3
3 Minimum difference of green value between skin and tumor | min -T
4 Maximum red value inside the tumor max::r
5 Standard deviation of red value inside the tumor S.D.TT
6 Standard deviation of saturation value inside the tumor S.D.f
7 Skewness of hue value inside the tumor skwg
8 Skewness of blue value in the periphery skwf

Area ratio between original tumor and

9 tumor brightness 130 or less area’30

The following feature selection strategy based on the inves-
tigation of margin of SVM classifier [22] selected 9 image
features. Table II summarizes the selected 9 features with
the selected order. Note here that abbreviation ming presents
minimum green (g) value inside the tumor (T).

B. Training of AFINN and developed fuzzy rules

A total of 88 fuzzy if-then rules were developed as a result
of the training phase of our system. Table III shows examples
of those developed rules. In each column, ID represents serial
number of rules, following 9 values are central value of
fuzzy membership function associated with related features
(i.e. former part of fuzzy rules, w;;), and the most right column
indicates the classification value (i.e. latter part of fuzzy rules;
wjx) such as benign (0) or malignant (1).

The modeling and learning parameters are summarized
in Table TV. Those were determined based on preliminary
experiments. Here {g g is threshold for integration of similar
rules in the rule creation phase, a is the weight factor of input
data space, €sgrr;, ;, 1s the initial value of learning constant of
rule creation phase, E;nisn 1s the lower limit of training error
determines continuation of the training, €z /g is the learning
constant in the LMS (least mean square) learning phase and
Oingt 1s initial value of o;;. Please refer original manuscript in
detail [19].

C. Classification of melanomas and its ground

The trained AFINN performed a fuzzy inference based
on only developed 88 rules and it achieved the classification
accuracy of 81.5% in SE and 73.9% in SP under the leave-
one-out cross validation. Note that providing this result is not
intended to insist on classification performance, but validity
of the developed rules. Fig.3 shows three dermoscopy images
as test examples. Table V summarized the extracted image
features, the top three fuzzy rules lead to the final result, its
relative degree of fitness (p;/ > p), the final output of AFINN
and its interpretation (i.e. classification result) corresponds to
each image in Fig.3.

IV. DIiSCUSSION

A. Interpretation of developed rules

We discuss developed fuzzy rules with in Table III. The 14-
th rule (rule for benign nevi: latter part is 0.0) has quite larger
ming (minimum green value inside the tumor) value than



TABLE IIT
DEVELOPED RULES

If (former part) then
D min? minf ming -T max?f S.D.;‘,r S.D.Z skwg: skwbp areal3? classification*
14 111.94 200.81 -23.60 255.01 11.32 0.13 49.45 -0.23 0.02 0.00
17 25.75 98.47 18.19 230.67 3434 0.02 -22.57 -0.70 0.83 0.00
22 -5.36 -37.69 -13.94 254.42 74.95 0.23 -1.40 -0.91 0.77 0.99
25 0.02 103.92 -80.92 255.01 57.45 0.09 88.92 -0.07 0.85 1.00
29 -3.37 -22.19 -11.29 257.62 65.81 0.24 5.85 -0.21 0.81 0.01
42 15.96 84.51 -83.88 212.35 44.12 0.05 -11.08 -0.49 0.69 0.00
54 8.65 107.39 -10.39 146.77 17.75 0.23 11.36 -0.59 0.69 0.99
69 24.05 156.84 -33.68 254.17 37.31 0.20 3.34 0.88 0.86 0.00
79 0.63 -21.77 -32.56 186.65 44.10 0.20 9.76 -0.33 1.09 0.95
88 8.03 47.79 -143.98 255.01 31.37 0.12 1.02 0.60 0.00 1.00
* Consequent part of the fuzzy rule [0,1] (0:benign 1:malignant)
TABLE IV
MODELING AND LEARNING PARAMETERS OF AFINN
[ Ni | N3 [ éserr | o | esmrri | Nadi | Ejinish | €LMs | Ginit |
[9 | T [ 07 [0 ] 005 [ N2 | 003 | 000l [ 01 |
(a) nevus (b) nevus (c) melanoma
Fig. 3. Test example of dermoscopy images.
TABLE V
EXECUTION EXAMPLES FOR IMAGES SHOWN IN FIG.3
if (former part) . |[__rule fitness |
| image | | No ‘ ming ‘ min? minZ*T | max? | sDT ‘ sD.T | skwr | skwi [ area™®" | then | pi/ L p(%) H final result
Extracted
feature 11 124 -8 255 84.44 0.19 18.10 -0.76 0.63 n/a 001
Fig.3.(a) Rules:1 2 11.00 132.25 1.96 259.25 105.00 0.20 2532 -0.86 0.62 0.01 99.9 nevus
Rules:2 18 3.44 203.64 -4.88 259.45 76.92 0.20 17.78 -0.38 0.64 0.99 0.00
Rules:3 76 0.52 12.85 -33.17 196.33 43.00 0.16 7.72 -0.27 0.75 0.19 0.00
Extracted
feature 47 117 -7 253 37.59 0.13 -1.11 -0.18 0.68 n/a -0.00
Fig.3.(b) Rules:1 38 74.41 89.13 2.65 235.61 7117 0.11 1.40 -0.16 0.52 0.00 94.3 nevus
Rules:2 65 1.71 1.04 -18.77 259.91 14.99 0.08 -0.12 -1.81 0.99 0.00 2.5
Rules:3 76 0.52 12.85 -33.17 196.33 43.00 0.16 7.72 -0.27 0.75 0.19 2.0
Extracted
feature 4 154 -17 255 67.00 0.19 13.25 -0.37 0.65 n/a 0.96
Fig.3.(c) Rules:1 18 3.44 203.64 -4.88 259.45 76.92 0.20 17.78 -0.38 0.64 0.99 97.0 mela‘.noma
Rules:2 29 -3.37 -22.19 -11.29 257.62 65.81 0.24 5.85 -0.21 0.81 0.01 0.07
Rules:3 44 27.99 97.02 -15.98 180.91 31.37 0.21 0.64 -3.41 0.70 0.00 0.06

* Consequent part of the fuzzy rule [0,1] (0:benign 1:malignant)

others. Since green channel correlates strongly with intensity or
luminance channel, the larger this value indicates the brighter
the inside of tumor. This suggests that the difference in
intensity between tumor and surrounding healthy skin is not
large, can be interpreted as border of the tumor is relatively
ambiguous. This fact corresponds with a category B (Border)
of the ABCD rule [4] indicates that the tumor with clear
boundary tends to be melanomas.

In other example, the 79-th rule (rule for malignant
melanomas: latter part is 0.95), area'3°(ratio of dark area to

original tumor size) is larger than others. This fact suggests that
the lesion has large dark region and therefore has a relatively
clear border. This case is also applicable to an example of
category B in the ABCD rule.

Fuzzy if-then rules created by AFINN likes above have
a lot of commons with clinical findings used in practice.
There are some exceptions typically for images with blue-white
structures (inside of the tumor seems blue, gray and/or white
in color due to existence melanin cells in deeper skin area or
effect of regression structure). We consider that it is mainly
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due to the tumor extraction algorithm used in this study did
not extract those area appropriately.

B. Evaluation of developed rules and classification accuracy

AFINN yields final results using a fuzzy inference only with
the developed fuzzy rules. In this study, our trained AFINN
achieved the classification accuracy of 81.5% in SE and 73.9%
in SP as previously described. From only the numerical point
of view, this result is rather lower to conventional models
shown in Table I, which pursue only accuracy. However,
our result is still equivalent to diagnosis accuracy of skilled
dermatologist (75-84%) and therefore the developed fuzzy if-
then rules were considered as reasonable.

The objective of this study is to provide the user the
“grounds for diagnosis”. We have a confident that providing
fuzzy rules lead to the classification result must be its easy-to-
read grounds and therefore they help the users (i.e. physicians)
to make their “diagnosis”.

From an analytical view, since fuzzy neural networks, in-
cluding AFINN lay weight on a readability of the input-output
data space (i.e. fuzzy if-then rules), degrees of freedom of the
system is restricted in comparison with the same scale multi-
layer neural networks or similar non-linear models and there-
fore they are at disadvantage in the “numerical” classification
accuracy in many cases. The outcome of above discussions,
we conclude that we should better to improve overall system
reliability by providing both results; (1) accuracy oriented final
classification result calculates by conventional classifiers, and
(2) reliability oriented grounds for the classification.

V. CONCLUSION

The objective of this study is to build the melanoma
classification system to have a capability of providing not
only results but also its grounds in easy-to-read format. In this
paper, we applied the adaptive fuzzy inference neural network
(AFINN). The trained AFINN achieved a sensitivity of 81.5%
and a specificity of 73.9% based on only developed 88 fuzzy
rules under the leave-one-out cross validation. AFINN also
provides the grounds for final classification result in fuzzy if-
then format and it should improve the overall system reliability.
We are planning to implement this model on our Internet-based
automated melanoma screening system in the near future.
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