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Background: Computer-aided diagnosis of dermoscopy

images has shown great promise in developing a quantitative,

objective way of classifying skin lesions. An important step in

the classification process is lesion segmentation. Many studies

have been successful in segmenting melanocytic skin lesions

(MSLs), but few have focused on non-melanocytic skin lesions

(NoMSLs), as the wide variety of lesions makes accurate seg-

mentation difficult.

Methods: We developed an automatic segmentation program

for detecting borders of skin lesions in dermoscopy images.

The method consists of a pre-processing phase, general lesion

segmentation phase, including illumination correction, and

bright region segmentation phase.

Results: We tested our method on a set of 107 NoMSLs and

a set of 319 MSLs. Our method achieved precision/recall

scores of 84.5% and 88.5% for NoMSLs, and 93.9% and

93.8% for MSLs, in comparison with manual extractions from

four or five dermatologists.

Conclusion: The accuracy of our method was competitive or

better than five recently published methods. Our new method

is the first method for detecting borders of both non-melanocy-

tic and melanocytic skin lesions.
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THE NUMBER of skin cancer cases is on the rise
in the United States and other parts of the

world, with the incidence being 40% of all new
cancer cases (1). Two major types of malignant
skin tumors are basal cell carcinoma (BCC) and
melanoma (2). BCC is one of non-melanoma
skin cancers, whereas melanoma is considered
malignant melanocytic tumor as they originate
from different cell types (1), see Fig. 1. Mela-
noma is by far the most proliferative, invasive,
and metastatic skin lesions, whereas BCC are
seldom metastatic (2). Although advanced-stage
melanoma is often fatal, if diagnosed early,mel-
anoma can be cured (3). Therefore, early detec-
tion and diagnosis of these skin lesions are
important.
Dermoscopy, or epiluminescence light micros-

copy, was developed to diagnose skin lesions.
Dermoscopy was an important advance in skin

lesion diagnosis because it makes subsurface
areas more visible, allowing for the identifica-
tion of important dermoscopic features, such as
blue-white areas, dots/globules, and blotches
(4). Even with these advantages, dermoscopy
remains subjective and has low reproducibility
(3). Many algorithms have been used in con-
junction with dermoscopy for the diagnosis of
pigmented skin lesions, such as the ABCD rule
of dermoscopy, the ELM pattern analysis, the
7-point checklist, and the CASH algorithm (5).
Notwithstanding the variety of algorithms
available, diagnosis remains difficult and highly
subjective; therefore, there is a need for an
objective computer-aided diagnosis method for
dermoscopy images.
The overarching goal of this work was to

develop a computer-aided diagnosis system
that can classify non-cancerous skin lesions
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from the cancerous ones. Many systems have
been successful in distinguishing benign from
cancerous melanocytic skin lesions (MSLs), but
few methods have focused on distinguishing
these lesions from non-melanocytic skin lesions
(NoMSLs). One reason is that melanomas are
associated with poor prognosis and resistant to
treatments such as chemotherapy, so it is espe-
cially important to recognize these lesions early
(2). Another reason is that the wide variety of
NoMSLs makes detection and classification
more difficult.
The border of a skin lesion provides impor-

tant information for the diagnosis of the disease,
and thus an automated imaging method for
border detection is a critical step for computer-
aided diagnosis. A few methods that focused
specifically on the detection and classification of
NoMSLs are the use of optical coherence tomog-
raphy and fluorescence (6–8). Another important
method uses the measurements of semi-translu-
cent areas in dermoscopy images to classify
BCC from other lesions, but their segmenta-
tion method was not automatic (9). Segmenta-
tion of NoMSLs is especially important as the
diagnostic improvement achieved by dermos-
copy is actually higher for NoMSLs than for
MSLs (10).
Computed-aided diagnosis of dermoscopy

images is becoming a more feasible option for
skin lesions, which would allow for an objective
and repeatable way of classifying skin lesions.
This process usually consists of four compo-
nents: image acquisition, lesion segmentation
or border detection, feature extraction, and
classification. Previously, there were many

examples where automatic segmentation was
successful in detecting the border of skin lesions,
for instance, the segmentation of MSLs has been
successfully accomplished (11). Inaccuracies in
the lesion segmentation component can lead
to inaccuracies in classification. Also, improve-
ments in the segmentation of dermoscopy
images offer a better classification performance
overall (3). Therefore, in this study, we proposed
to develop a general lesion segmentation method
as a first step in developing a classification
method that distinguishes melanomas from both
benign melanocytic lesions and NoMSLs.
The segmentation of NoMSLs poses several

challenges that make segmentation especially
difficult, see Fig. 2. For one thing, there are a
large variety of lesion types, such as BCC and
seborrheic keratosis (SK), and the borders of
these lesions are somewhat ambiguous, making
the reliability of the segmentation difficult.
There is often low contrast between the lesion
and the background skin, as well. In addition,
the morphology of the lesions ranges from
small spread-out dots to large fractal-like

(a)

(c)

(d)

(e)

(b)

Fig. 2. Segmentation challenges. The variety of non‐melanocytic
lesions causes them to be difficult to segment because they widely
vary in appearance, have irregular borders, and have multiple colors.
In general, there are several issues that must be taken into account
for accurate segmentation of dermoscopy images. These are the
microscope border, bubbles, hairs or other artifacts in the image.
Here, we give example images for certain segmentation challenges:
(a) color variegation, (b) irregular borders, (c) microscope border, (d)
bubbles, and (e) hairs.

(a) (b)

Fig. 1. Dermoscopy images of two types of skin lesions. (a) Melano-
cytic lesions (MSLs) consist of melanomas, cancers that are known
for their invasive nature, and benign melanocytic lesions. Melano-
mas usually have irregular borders with some color variation,
whereas benign melanocytic lesions often have smooth borders and
few colors. (b) Non‐melanocytic lesions (NoMSLs) come in a wide
variety, ranging from basal cell carcinoma to seborrheic keratoses,
and tend to be varied in appearance, have irregular borders, and
multiple colors and textures within the lesions.
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lesions, and colors range from dark brown to
red to bluish-white lesions. Segmentation is fur-
ther complicated by the presence of foreign
objects such as hairs, air bubbles, and the
microscope border.
Notwithstanding these challenges, we have

developed a three-step border detection method
for the segmentation of NoMSLs. We compare
our results with five other segmentation meth-
ods from the literature and show that our
method is effective for segmenting out NoM-
SLs. In addition, our method is able to segment
out MSLs, including melanoma, thus proving it
to be versatile enough to segment skin lesions
in general.

Materials

A total of 107 digital NoMSL dermoscopy
images, 34 BCC, 59 SK, 26 of which are on the
face, three hemangioma, and 11 hematoma,
were obtained from the Department of Derma-
tology, Keio University School of Medicine. The
non-melanocytic cases used in this study were
clinically diagnosed by several dermatologists.
The dimensions of the images were 2272 by
1704.
The previously published (3) melanocytic

dataset consisted of a total of 319 digital der-
moscopy images: 247 melanocytic nevi, (188
of which are Clark nevi and 59 of which are
Reed nevi) and 75 melanomas (including 23
melanoma in situ) from the University of
Naples and Graz. All of the melanocytic cases

were diagnosed based on histopathological
examination of biopsy material by several
expert dermatologists. The typical size of the
images is 500 by 500, but dimensions of these
images varied.

Methods

To segment NoMSLs, we used the following
three steps to define the border of these lesions,
(See Fig. 3): (i) pre-processing, (ii) general lesion
segmentation, and (iii) ‘bright’ region segmenta-
tion. The method was dependent on three
parameters, (See Table 1), that were determined
experimentally. The structuring element size r,
was used mainly for morphology operations
such as dilation, opening, closing, etc. and
therefore was dependent on the size of the
image. The second and third parameters, gen-
eral object removal ratio s1 and bright object
removal ratio s2, were used for object removal,
(see below for more details).

Pre‐processing: (I) and (II)
The goal of the pre-processing phase of this
algorithm was to remove pixels that correspond
to the microscope border. The border always
appears as a gradient with very dark pixels
near the edge of the image successively becom-
ing lighter toward the interior of the image. We
first needed to identify dark pixels and then
expand the segmentation to include lighter
areas, as segmenting out these lighter areas

Fig. 3. Flowchart of the segmentation method. The method is broken into three main pieces: pre‐processing, general lesion segmentation, and
bright region segmentation.
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would lead to lesion pixels being identified as
the microscope border. First, we converted the
RGB (red, green, blue) image to grayscale and
identified dark pixels in the image, defined as
having intensities <35, (with pixel range
between 0 and 255). Next, the segmented dark
region was dilated using a disk of size 3r, to
include lighter areas of the microscope border
that would not have been picked up. To pre-
vent any lesion pixels from being falsely
included, we removed any objects that are not
touching a border of the image, (I). This seg-
mented microscope border was removed from
the other lesion segmentations. To segment out
the tumor area, we used a thresholding tech-
nique using intensity information. The lesions
and background skin can have many irregulari-
ties such as veins, dirt, and speckles, which
break the uniformity of either the background
or the lesion. Thus, we needed to smooth out
these areas to reduce noise (II). We did this by
applying a circular averaging filter of size r to
the original RGB image.

General lesion segmentation: (III)–(V)
For the second phase of the border detection
method, we segmented out the general lesion
using three steps: i) segmentation of tumor area,
ii) correction of non-uniform illumination, and
iii) noise reduction.

Segmentation of tumor area
Once the smoothing process had taken place,
we needed to binarize the image into the ‘back-
ground skin’ and ‘lesion’ areas. We converted
the image into a binary image using Otsu thres-
holding (12) on the green channel of the filtered
image (III), assigning the lower intensity regions
to be lesion regions. Otsu’s thresholding finds
an appropriate threshold by maximizing the
between-class variance, and thus it does not
specifically account for things such as the
microscope border and artifacts. Although the
blue channel is commonly used and usually

provides good results (14), we found here that
the blue channel misses some pixels. By con-
trast, we found that the red channel tends to
include too many pixels. The pixels correspond-
ing to the microscope border region were
excluded from the Otsu threshold calculation to
avoid bias from these low-intensity pixels.
There were some images in which non-uni-

form illumination occurs. This usually created
large shadowy areas that are darker than the
rest of the image background (roughly larger
than 1/3 the size of the image). These shadowy
areas in the image were often identified as
lesion pixels if not previously corrected for.
Therefore, to detect these regions, we calculated
the area of the largest object in the segmenta-
tion. If the area was between 1/3 and 2/3 the
size of the total image, we corrected for non-uni-
form illumination. Thus, we needed to adjust
the contrast so that it was relatively uniform
across the whole image, which was achieved by
using contrast-limited adaptive histogram equal-
ization (CLAHE) (15) on the green channel of
the smoothed image, (before thresholding). In
this method, the output for each pixel was its
rank in its modified histogram of its respective
tile. The image was divided into four equal tiles
and its ‘rank’ was calculated as the number of
pixels whose intensities were below the pixel of
interest in the modified tile histogram. The mod-
ified histogram of each tile was found by calcu-
lating the original histogram of the tile and the
number of pixels were clipped and redistributed
uniformly, see Fig. 4. Once the pixel intensities
were recalculated based on its rank, the tiles
were then merged using bilinear interpolation to
prevent unnatural boundaries (IV). After
CLAHE, we binarized the image choosing a
threshold using Otsu’s method, as above (III).

Noise reduction (V)
After the initial binarization, it was necessary to
remove areas associated with background arti-
facts such as hairs, blood vessels, dirt, etc. that
we classify as ‘noise’ in the image, and to avoid
any holes in the segmented object. The noise
removal step was accomplished using morpho-
logical operations (V). Opening was used to
merge any small nearby pixels together; for the
opening operation, we used a disk of size r. As
hairs tend to be long and thin, we used a clos-
ing operation with a disk of size 2r to remove
thin objects. For continuity, we filled in any

TABLE 1. Parameters for the proposed method

Structuring

element size r

General object

removal ratio s1

Bright object

removal ratio s2

l/150 9/100 1/8000

The three parameters, r, s1, and s2 were determined experimentally. l

is the length (in pixels) of the shortest dimension of the image.
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holes within the selected region and removed
any objects smaller than s1 times the area of the
largest object. Therefore, objects are removed
based on the size of the other identified objects,
as the magnification may differ between
images. It has been seen in previous works that
similar automatic segmentation methods tend
to result in segmented areas smaller than that
of the expert dermatologists (3). Accordingly,
we dilated the image using an octagon of size
3r to correct for this underrepresentation.
Lastly, we filled in any holes that may have
occurred due to the dilation process to create a
continuous border.

Bright region segmentation: (VI)(VII)
The last phase of the segmentation method
identified the ‘bright’ regions of the lesions. We
found that in some lesions, there was a small
part that was brighter than the rest of the lesion
and not picked up by the general lesion seg-
mentation method. Therefore, we have devel-
oped an automatic segmentation method
specifically for these regions. We observed that
these regions tend to be of higher intensity than
the background skin, so first, we found the
background intensity in the blue channel,
defined by the average intensity of the non-zero
pixels excluding the segmented region and the
microscope border (VI). Next, we thresholded
the image using the intensity value 1.7 standard
deviations larger than the average background

intensity, taking the regions of higher intensity
to be ‘bright regions’. We once again used mor-
phology operations to remove noise (VII). First,
we opened the image to remove small objects
using a disk of size r. Next, we filled in any
holes, and removed objects smaller than s2 mul-
tiplied by the total area of the image. To include
areas that were slightly less bright, we dilated
the segmented image using an octagon of size
3r. We only included the parts of the ‘bright’
segmentation that overlaped with the base seg-
mentation, as only these regions should be part
of the lesion. Lastly, we added the general
lesion segmentation to the ‘bright’ segmentation
and filled in any holes caused by the addition.

Conditionals: (VIII)
There are four conditionals (VIII) that we put
on the segmentation to avoid inaccuracies and
to single out a continuous border region. (i)
First, the ‘bright’ segmentation was excluded if
its area was >20% of the total image area, as
these areas are known to be small. The next set
of conditionals are aimed at singling out a con-
tinuous segmentation region. (ii) For the second
conditional, we determined if anything touched
the border of the image, and if so, we only
kept the object that overlaps the center of the
image. If nothing touched the center of the
image, the object touching the border whose
centroid was closest to the image centroid was
included in the segmentation, along with any
object not touching a border as well. (iii) The
third conditional was aimed at correcting the
convexity of the segmentation. It was observed
that our computer-aided method tends to result
in segmentation being less convex than those
of expert dermatologists. To correct for this, the
largest region’s convexity was measured,
defined by the number of pixels in the region
divided by the number of pixels in the convex
hull of the region. If this region did not have a
convexity >85%, a closing operation was per-
formed using an octagon of size 9r. This made
the segmentation more convex and merged any
objects that were close but not touching. (iv)
For the last conditional, objects touching the
borders of the segmentation were removed if
there were more than two objects unless both
objects touch the border. Finally, the segmenta-
tion was dilated with an octagon of size 3r and
holes that were formed during these processes

Fig. 4. Contrast‐limited adaptive histogram equalization (CLAHE)
Histogram. A diagram of the clipping and redistribution of pixels in
CLAHE method (13). The intensity of the pixels is redistributed so
that intensities with high numbers of pixels are redistributed evenly
among the intensity regions. In this way, the number of pixels for a
certain intensity region is capped. The dashed bar represents the
largest number of pixels allowed for each intensity region, and the
red bar represents the redistributed pixels.
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were filled. The entire process takes on average
between 1.4 and 4 s to segment an image.

Statistics

To verify the accuracy of our border detection
results, we need to have a statistical measure of
how precise the segmentation is. There are
many statistical metrics to measure accuracy,
such as sensitivity, specificity, precision, recall,
error probability, and XOR measure (11). We
used precision and recall in our studies as they
are commonly used in engineering, see Eqs (1)
and (2). In general terms, precision is a mea-
sure of the accuracy of the segmentation, or
whether a chosen pixel is actually part of the
lesion. Recall is a measure of how much of the
lesion is covered by the segmentation, or how
many actual lesion pixels were chosen by the
segmentation. In this way, precision and recall
balance each other and often if you have a high
score in one, you have a low score in the other.
For this work, we want to achieve a high score
in both, so to compare the precision and recall
scores of two different methods, we use the
F measure for precision and recall, defined in
Eq (3).
The manual segmentation results by several

dermatologists are considered to be the ‘ground
truth.’ We determine the number of true posi-
tives (TP): this is the number of pixels that were
defined as part of the lesion in both the auto-
matic segmentation method and the ground
truth. The false positives (FP) are defined as the
pixels that are defined as the background in the
ground truth, but are identified as part of the
lesion in the automatic segmentation. The false
negatives (FN) are defined as those pixels that
are determined to be lesion pixels in the ground
truth, but are identified as background pixels in
the automatic segmentation. Lastly, a true nega-
tive (TN) pixel is a pixel that is identified as a
background pixel in both the manual segmenta-
tion and the automatic one.
Precision, recall, and F-measure are defined

as follows:

Precision ¼ TP

TPþ FP
� 100% ð1Þ

Recall ¼ TP

TPþ FN
� 100% ð2Þ

F-measure ¼ 2� Precision� Recall

Precisionþ Recall
ð3Þ

We compare our automatic segmentation
with manual segmentations by trained profes-
sionals. It has been shown that even by trained
dermatologists, the deviation of manual extrac-
tions is large, with a standard deviation of 8.9%
for the tumor area extracted by five dermatolo-
gists (3). We showed in previous work that the
area in which at least two experts identify a
pixel as part of the lesion can be taken as the
‘gold standard’ (3). One hundred and seven
NoMSLs were used in this study, which had
been segmented out by four dermatologists to
compare the accuracies of the three methodolo-
gies. Therefore, for NoMSLs, we used the area
in which at least two out of four dermatologists
identified a pixel as part of the lesion as the
‘gold standard’ and for MSLs, we used two of
five dermatologists as the ‘gold standard,’ as
was used formerly (3).

Results

Segmentation of NoMSLs
To show the accuracy of our method, we com-
pare the average precision, recall and F-mea-
sure scores of our method with five other
methods: Garnavi’s (16), statistical region mer-
ging (SRM) (4), k-means ++ (KPP) (17), unsu-
pervised segmentation of color-texture regions
(JSEG) (18), and dermatologist-like (3). The seg-
mentation performance is summarized in
Table 2 for NoMSLs. Garnavi’s method does a
color channel transformation, smoothes the
image, and clusters based on thresholding. They
keep the two largest areas that represent the
background skin and the lesions areas. The
SRM method (4) uses statistical region merging
and smoothing. They remove light regions and
border elements. The KPP method uses spa-
tially constrained clustering, first by converting
pixel locations into polar coordinates and clus-
ters using RGB values and radius. They cluster
twice and then do region merging based on tex-
ture properties. The JSEG method (17) uses
color quantization, and then spatial segmenta-
tion to reduce the number of colors. Afterward,
it applies a region-growing method to merge
regions. Lastly, the dermatologist-like method is
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the oldest and so therefore might benefit from
some minor modification (3). In short, the algo-
rithm consists of filtering, thresholding, and
merging of small regions. The resulting seg-
ments are selected based on boundary condi-
tions and then lastly, a region-growing step is
performed.
As can be seen from Table 2, the new method

outperforms the other five methods, achieving
an average precision score of 84.5%, a recall
score of 88.5%, and an F-measure of 86.5. The #
failed, or the number of misextractions, was not
included in the statistics and so can be consid-
ered an independent measure of robustness.
Thus, our method attains both robust and accu-
rate results as it was able to extract all of the
lesions. The accuracy closest to ours was Gar-
navi’s method, achieving a precision of 84.5%, a
recall of 78.6%, and an F-measure of 86.3, but
this method failed to extract 10 images, which is
around 9% of the images. Therefore, while this
method does well for the ones it can extract, it
fails to extract a significant number of images.
In Fig. 4, we show a set of sample segmenta-

tions for NoMSLs: the dermatologist’s ‘gold
standard’, our segmentation method, and the
other segmentation method examined. The sam-
ple in the first row is a BCC with two types of
artifacts that needed to be accounted for: the
microscope border and a light region in the
lesion. In this example, most of the methods did
a good job at segmenting out the lesion except
for SRM that only excludes the microscope bor-
der and KPP that failed to extract it all together.
The sample in the second row is a benign

seborrheic keratosis of the face. The image
poses several challenges as there is little con-
trast between the lesion and the surrounding
skin, and there are small hairs and bubbles
within the image. Our method achieves good
results with this image as well achieving a
F-measure of 91, although its recall score is a

little lower indicating that our method is miss-
ing part of the lesion. This trend is also seen in
Garnavi’s method, JSEG, and the Dermatolo-
gist-like method, where the precision scores are
higher than the recall scores, although our new
method achieves the best results. This indicates
that computer-aided systems have difficulty
covering the entire image, which makes sense
because there is little contrast between the
lesion and the background skin, thus lesion pix-
els could easily be mistaken for background
skin. The SRM and KPP methods once again
perform poorly on this lesion.
The sample in the third row is also a benign

seborrheic keratosis of the face, with many hairs
and multiple colors within the lesion that com-
plicate the segmentation. We achieve good
overall results with an F-measure of 93, but we
include some background pixels in our lesion
indicated by the lower precision score. Garnav-
i’s method actually outperforms our method in
this case, achieving a F-measure of 95. Both
JSEG and our conventional method achieved
F-measure scores of 84. Once again, these meth-
ods achieve good precision scores, but low
recall. Therefore, they are missing pieces of the
lesion. The variation in color within the lesion
and background causes the KPP method to
achieve low scores both for precision and for
recall.
Overall, we were able to segment out the

‘bright’ regions seen in a few BBC lesions and
were also able to achieve good results segment-
ing out lesions that do not exhibit ‘bright’
regions. We accurately segment out lesions
under different illumination conditions and
background color tones and also those includ-
ing foreign objects such as the microscope bor-
der, hairs, bubbles, and stitches. Our method
performs better than five other methods as indi-
cated by its higher F-measures. We find that
Garnavi’s method performs well, but it fails to

TABLE 2. Average precision and recall scores for non‐melanocytic lesions

Our method Garnavi’s method SRM method KPP method JSEG method Dermatologist-like method

Precision (%) 84.5 95.7 68.6 59.0 86.2 93.7

Recall (%) 88.5 78.6 76.8 65.4 55.1 66.7

F-measure 86.5 86.3 72.5 62.0 67.2 77.9

# Failed 0 10 4 62 14 4

Published – 2010 2008 2008 2007 2006

Here, we show our results for a set of 107 non-melanocytic lesions and compare it with five recently developed methods. The first three rows are the

precision, recall, and F-measure scores. The fourth row states the number of images that were excluded from the calculations because the method

failed to extract a lesion. The last row is the year that the algorithm was published. The columns list the names of the methods evaluated.
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extract many images. JSEG and the dermatolo-
gist-like method perform fairly well, but they
tend not to cover the whole lesion areas.

Segmentation of MSLs
We segmented a set of 319 benign melanocytic
and melanoma lesions that had been success-
fully segmented out in previous work (3).
Table 3 summarizes the segmentation perfor-
mances for MSLs; our method achieved an
average precision of 93.9%, recall of 93.8%, and
an F-measure of 93.9. The best method was the
dermatologist-like method with precision of
94.1%, recall of 95.2%, and an F-measure of
94.6. The SRM also outperformed our new
method with an F-measure of 94.1. Although
these two other methods outperformed our
method, the improvement was only minimal. In
addition, our method outperformed the three
remaining methods. Hence, our method
attained competitive or better performance than
the other methods tested. We also used our

segmentation method on a completely different
set of 548 melanocytic lesions (506 melanocytic
nevi and 42 melanomas) from Keio University
and achieved visually satisfactory results.
In Fig. 6, we show three examples of the six

segmentation results for the MSLs. The left col-
umn shows the originals, the second column
shows the ‘gold standards’ from the five derma-
tologists, the third column shows our new seg-
mentation results, and the fourth through
eighth column show the other segmentation
methods’ results: Garnavi’s method, SRM, KPP,
JSEG, and the dermatologist-like method. All
three of our segmentations achieve good results,
with the first sample (a) achieving a precision
score of 96.2%, a recall score of 98.6%, and an
F-measure of 97.4; the second sample (b)
achieving a precision score of 96.1%, a recall
score of 97.1%, and an F-measure of 96.6; and
the last sample (c) achieving a precision score
of 90.6%, a recall score of 99.9%, and a F-mea-
sure of 95.0. In samples (a) and (b), the preci-
sion score and recall score are similar, but in

Fig. 5. Non‐melanocytic Lesion Segmentations. The left column shows the originals, the second column shows the ‘gold standards’, the third col-
umn shows our segmentation results, and the fourth through eighth column show the other segmentation methods’ results, see text for more detail.
The precision/recall scores of these regions are as follows: Our method: (a) 91% and 97%, (b) 96% and 86%, and (c) 90% and 96%; Garnavi's
method: (a) 98% and 92%, (b) 100% and 71%, and (c) 93% and 97%; SRM method: (a) 35% and 100%, (b) 0% and 0%, and (c) 20% and
100%; KPP method: (a) 0% and 0%, (b) 43% and 46%, and (c) 17% and 45%; JSEG method: (a) 100% and 76%, (b) 100% and 60%, and (c)
100% and 73%; and the dermatologist‐like method: (a) 97% and 89%, (b) 99% and 74%, and (c) 99% and 73%.

TABLE 3. Average precision and recall scores for melanocytic lesions

Our method Garnavi’s method SRM method KPP method JSEG method Dermatolgist like

Precision (%) 93.9 97.5 95.9 91.8 97.6 94.1

Recall (%) 93.8 88.7 92.4 87.0 88.4 95.2

F-measure 93.9 92.9 94.1 89.3 92.8 94.6

# Failed 0 1 1 28 0 0

Published 2011 2010 2008 2008 2007 2006

Here, we show our results for a set of 319 melanocytic lesions and compare it with five recently developed methods. The first three rows are the preci-

sion, recall, and F-measure scores. The fourth row states the number of images that were excluded from the calculations because the method failed to

extract a lesion. The last row is the year that the algorithm was published. The columns list the names of the methods evaluated.
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the last example, the recall score is much higher
than the precision score. This is because the
method overestimated the size of the lesion; it
covered it almost completely, but it included
too many background pixels as well.
In comparison, for the selected lesions,

Garnavi’s method usually achieved one score
that was higher than ours, but the other that
was lower. Garnavi’s method was worse than
ours for the first two lesions, but better than
ours for the last one. SRM outperformed our
method for each of the three lesions. KPP also
achieved worse results than ours and Garnavi’s
method for the first two lesions, but achieved
better scores than ours for the last lesion. The
JSEG method usually had higher precision
scores than ours, but also generally had lower
recall scores. Lastly, the dermatologist-like
extraction method achieves less consistency for
the first sample, achieved similar results for the
second lesion, and outperformed our method
for the last lesion.

Discussion

We have developed a novel, accurate method
for segmenting non-melanocytic (NoMSLs) and
melanocytic lesions (MSLs). This is the first step
toward developing a computer-aided diagnosis
system for classifying skin lesions in general.
We achieved accurate results on a set of NoM-
SLs, with precision and recall scores of 85.0%
and 88.8%, respectively. For non-melanocytic

lesions, our method performs the best of five
other recent methods in the literature (3, 4,
16–18). On average, for NoMSLs, our method
has a lower precision score than recall score as
it tends to cover most of the lesion, but overes-
timates slightly. In comparison, the dermatolo-
gist-like method (3) is very precise, achieving a
higher precision score than our method, but
having a much lower recall score. This is
because this method tends to be very accurate
in choosing lesion pixels, but misses parts of
the lesion. We feel that this is a result of the
design of these methods. Garnavi’s method also
performs well, but was unable to segment a
significant portion of the images. The method
also does considerably better at precision than
at recall, which means that it tends to miss
parts of the lesion. This trend is also true for
the dermatologist-like method, which seems to
indicate that our new method does a better job
of covering the entire lesions in general. We
also see a trend in which many of the algo-
rithms fail to extract some of the lesions, which
is not the case for our method.
On a set of MSLs, we also achieved good

results with scores of 93.9% and 93.8%. Our
method is more accurate in segmenting melano-
cytic lesions than NoMSLs. This is because
MSLs are easier to segment out than non-mel-
anocytic lesions due to the lack of color varia-
tion and smoother borders. For these cases, our
method does equally well for precision and
recall. For MSLs, the dermatologist-like method

Fig. 6. Melanocytic lesion segmentations. The left column shows the originals, the second column shows the ‘gold standards’, the third column
shows our segmentation results, and the fourth through eighth column show the other segmentation methods’ results, see text for more detail. The
precision/recall scores of these regions are as follows: Our method: (a) 96% and 97%, (b) 96% and 97%, and 91% and 100%; Garnavi's method:
(a) 100% and 89%, (b) 97% and 93%, and (c) 94% and 100%; SRM method: (a) 99% and 97%, (b) 99% and 97%, and (c) 97% and 95%;
KPP method: (a) 100% and 86%, (b) 100% and 83%, and (c) 98% and 98%; JSEG method: (a) 100% and 85%, (b) 98% and 96%, and (c)
100% and 82%; and the dermatologist‐like method: (a) 93% and 100%, (b) 96% and 98%, and (c) 96% and 98%.
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outperforms our new method, but only slightly.
This is logical as the conventional method was
designed for MSLs, whereas ours was not.
Therefore, the fact that our method is competi-
tive shows that it is a successful method as it
performs almost as well as or better than exist-
ing methods for melanocytic lesions, which it
was not tested on.
Overall, the best methods seem to be our

new method, the dermatologist-like method,
and Garnavi’s method. These methods all had a
pre-processing step (filtering), used Otsu’s
method, and had region selection based on
boundary/area conditions. Our method also
was the most consistent in terms of precision
and recall, their scores always differing the least
compared with the other methods, for both
non-melanocytic and melanocytic lesions. Our
method also had the least amount of failures.
The dermatologist-like and Garnavi’s method
also always achieved good precision scores,
while their recall scores varied. This means that
they are very accurate in choosing pixels, but
may not cover the entire lesion. The dermatolo-
gist-like method also had a low failure rate.
Garnavi’s method achieved lower recall scores
for all types of lesions and also had a high fail-

ure rate for NoMSLs. KPP and JSEG seemed
the least capable of handling NoMSLs of all the
other methods. Both of these methods used a
clustering-based method, JSEG using color
quantization, whereas KPP used clustering
based on RGB or Lab color spaces and the
radial location. Both methods had the highest
failure rates and low recall scores, indicating
that they could not detect the whole lesion and
sometimes could not detect the lesion at all.

Conclusion

Tumor extraction from dermoscopy images is
an important step for computer-aided diagnosis
of skin lesions. Our method is the first tumor
extraction method to consider both MSLs and
NoMSLs. Our method achieved the best scores
for NoMSLs (precision: 84.5%, recall: 88.5%),
and third best for MSLs (precision: 93.9%,
recall: 93.8%) of five recently published meth-
ods. Our segmentation method could become
the first step in classifying cancerous from
benign lesions, and NoMSLs from MSLs, with
our overarching goal being to classify melano-
mas from all other skin lesions using a computer-
aided diagnosis system.
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