
One-Dimensional Convolutional Neural Networks
or Android Malware Detection

Chihiro Hasegawa Hitoshi Iyatomi
Applied Informatics

Faculty of Science and Engineering

Hosei University, Japan

{chihiro.hasegawa.4w@stu., iyatomi@}hosei.ac.jp

Abstract—In recent years, malware aims at Android OS has
been increasing due to its rapid popularization. Several studies
have been conducted for automated malware detection with
machine learning approach and reported promising performance.
However, they require a large amount of computation when
running on the client; typically mobile phone and/or similar
devices. Thus, problems remain in terms of practicality. In
this paper, we propose an accurate and light-weight Android
malware detection method. Our method treats very limited part
of raw APK (Android application package) file of the target as a
short string and analyzes it with one-dimensional convolutional
neural network (1-D CNN). We used two different datasets each
consisting of 5,000 malwares and 2,000 goodwares. We confirmed
our method using only the last 512-1K bytes of APK file achieved
95.40-97.04% in accuracy discriminating their malignancy under
the 10-fold cross-validation strategy.

Index Terms—malware identification; machine learning; 1D
convolutional neural network

I. INTRODUCTION

With the spread of smartphones and IoT techniques, the

share of Google s Android OS is increasing rapidly [1]. Along

with that, malware aiming at Android OS is also increasing,

and new Android malware is found every day in the Android

application market represented by Google Play [2]. Generally,

there are three analysis methods to determine malware. They

are surface analysis, dynamic analysis, and static analysis [3].

Surface analysis investigates character strings included in the

target file. From the included character string, investigator

might detect or obtain some meaningful information of the

attack targets such as their domain, URL and so on. Dynamic

analysis investigates the behavior of applications running on

sandbox environment. This analysis is usually expensive, but

makes it easier to find malicious communication etc. Static

analysis is a method utilizing a code information obtained by

disassembling and decompiling. For example, this analysis can

see characteristics of malicious code such as using obfuscated

variable names, functions etc. which make malware analysis

difficult.

These are promising method, while they require expertise

and experience especially on software development and binary

analysis, thus they are fundamentally costly. In such back-

grounds, several studies trying to detect Android malware have

been proposed by using various machine learning techniques.

Milosevic et al. [4] extracted permission information and

source codes by decompiling of Android application package

(APK) file from M0Droid dataset [5]. They analyzed them

with typical machine learning techniques such as random

forest, logistic regression, support vector machine, and their

ensemble and they attained 0.956 in F-measure score. Yang et

al. [6] converted character strings of several files (e.g. Dalvik

executable file; executable on Dalvik virtual machine stored in

APK file.) in the target APK file into image and analyzed it by

using random forest with GIST features [7]. They evaluated

their method using datasets from Android Drebin Project [8,

9] and their original method achieved 95.51% of precision on

malignant detection task. Meanwhile, in the field of machine

learning, studies on deep learning has gained considerable

achievements among a very diverse range of problems, and

thus is attracting attention. Under such circumstances, research

that applies deep learning techniques to the security field has

come to be seen [10].

Convolutional neural networks (CNN) [11, 12] is a represen-

tative machine learning method in deep learning, mainly used

for image recognition problems. The most significant benefit

of CNN over conventional approach is that it automatically

obtains major features for the classification in the process of

learning. This means that the system builder does not have to

design and implement handmade features, those are the most

essential but intractable part especially in large scale tasks. In

natural language processing (NLP) task, character-level CNN

(CLCNN) [13] or one-dimensional CNN (1-D CNN) has been

used and showed excellent results [14]. CLCNN, as the name

imply, is a CNN specially designed for text processing and

it convolves character strings in a one-dimensional direction.

The most significant advantage of CLCNN to mention is its

high affinity for many effective and well-known strategies

to improve the essential learning quality derived from CNN

(e.g. data augmentation, drop-out for regularization, analyzing

methodologies of feature maps for model interpretation, etc.).

The next thing to mention is that the training time is much

less than that of long short term memory (LSTM) [15] widely

used in NLP tasks. In their application to malware detection,

Huang et al. [16] converted Dalvik executable file into RGB

color image and analyzed them with CNN. They attained

93% in accuracy on this two classes classification task. These

image conversion methods are also seen in Windows malware

detection in literatures [17-19].

2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA 2018), 9 -10 March 2018, Penang, Malaysia

978-1-5386-0388-8©2018 IEEE 101



These methods imaged executable file and performed the

classification based on it. However, there is no basis to convert

the target object, which is a one-dimensional data string,

into an image. They are not theoretically sound and require

additional hyper parameter (e.g. width of the image). Raff

et al. [20] mentioned above issues and analyzed Windows

portable executable (PE) as a character string for malware

identification. They used a 1-D CNN and emphasized not

to miss malicious codes that is unknown where they are

embedded, and developed a method to convolve the entire

file among the available memory constraints of the GPU.

Their very shallow model uses very large kernel size of 500

and stride size of 500 for 2MB string inputs and achieves

high classification accuracy of 94% by using global max

pooling at the end. However, their calculation cost in training

is tremendous; 16.75 hours / epoch with the latest eight GPUs,

and therefore it is inferred that the time of execution at the

client is also large. In sum, there is a concern that available

situation might be limited. We therefore, propose a fast and

accurate detection method for Android malware. Our method

only uses the first or last N bytes code of raw APK file and

investigates them with a 1-D CNN.

II. METHOD

APK is an archive file based on Java archive (JAR) format

and, in fact, is a ZIP archive. It is composed of classes.dex
(archive of executables on Dalvik virtual machine), Android
Manifest.xml (permission information the application use), res
directory (resource files) and so on. Generally, it is highly

likely that these files contain malignant clues [21]. The actual

location of these files stored in APK file depends on conditions

and, of course, the location of malicious codes is unknown.

Raff et al. [20] presented one possible solution for fundamen-

tally the same issue as abovementioned. However, the size of

the APK file is often several to 10 times larger than windows

binary file. Therefore their methodology cannot be applied due

to resource limitation in use in current situations as mentioned.

We therefore proposed in this manuscript that we analyzed

only the beginning or end N bytes of raw APK file with a

1-D CNN. The configuration of our 1D-CNN is shown in Fig.

1. and Table I.

All the convolution layers have (32 ×) 5 × 1 kernels, and

pooling size in all maxpooling layer is 5 × 1. We applied batch

normalization [22] in every convolution layer and rectified

linear unit (ReLU) activation function is used in all layers.

Finally, the output of final layer will be squashed with softmax

function. For evaluation, we used the 10-fold cross-validation.

III. EXPERIMENTS AND RESULT

A. Dataset

We collected malware from two datasets; (1) AMD dataset

[23] and (2) Android Drebin Project dataset. The former stores

a total of 24,553 malwares and found 10 malware families have

at least 500 samples. The latter contains 5,560 applications

from 179 different malware families. These datasets only pro-

vide malware, so we needed to collect goodware dataset from

TABLE I
CONFIGURATION OF OUR SUPPOSED NETWORK

input (N × 1)

Convolution (5× 1)-32

Batch normalization

ReLU

Convolution(5× 1)-32

Batch normalization

ReLU

Maxpool (5× 1)

Convolution (5× 1)-32

Batch normalization

ReLU

Convolution (5× 1)-32

Batch normalization

ReLU

Maxpool (5× 1)

Fully connect

Softmax

TABLE II
MALWARE DETECTION PERFORMANCE ON DATASET I

input size [byte] accuracy (beginning) [%] accuracy (end) [%]

512 94.29 95.98

1024 93.80 96.10

2048 92.04 96.51

4096 93.17 93.17

other sources. We collected many APK files from Appsapk

[24] and Apkpure [25], and inspected them with a total of 62

tools provided in VirusTotal [26]. We selected a total 2,000

applications as goodware identified as suspicious or malignant

less than two tools out of 62.

In this experiment, we combined randomly choose a total

5,000 malwares from either of malware dataset (1) or (2) and

2,000 goodwares. We refer them as Dataset I and Dataset

II, respectively. We also build a Dataset I (typical) that is

composed of typical 10 types (500 × 10) of malwares from

(1) AMD dataset and abovementioned 2,000 goodwares.

B. Experiments

Evaluation of malware detection performance was evaluated

using the above datasets. In the experiments, we choose N =

512, 1024, 2048, and 4096 from the beginning and the end

of the APK file to be analyzed, respectively. The results of

identification performance for Dataset I, Dataset I (typical),

and Dataset II are shown in Tables II, III, and IV, respectively.

IV. DISCUSSION

Our experiments demonstrated our method attained very

promising malware discrimination performance (maximum

97.04%) even with extremely short input data size N in all

cases. We found no significant differences among discrimina-

tion performances for two datasets. More concretely, almost

2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA 2018), 9 -10 March 2018, Penang, Malaysia

978-1-5386-0388-8©2018 IEEE 102



Fig. 1. Overview of our 1-D CNN model for malware discrimination.

TABLE III
MALWARE DETECTION PERFORMANCE ON DATASET I (TYPICAL)

input size [byte] accuracy (beginning) [%] accuracy (end) [%]

512 94.26 95.40

1024 92.68 96.48

2048 93.55 96.14

4096 93.22 94.00

TABLE IV
MALWARE DETECTION PERFORMANCE ON DATASET II

input size [byte] accuracy (beginning) [%] accuracy (end) [%]

512 95.67 96.36

1024 95.71 97.04

2048 94.89 94.68

4096 94.98 95.63

same performance in different dataset and different selection

of data. For this reason, we believe the validity of this result

and our method are high. In effectiveness of our method,

since malware is treated as a short character string without

being decompressed as it is, it can be executed with far less

resources than conventional methods. Therefore, our method is

considered to have great merit in actual operation. The analysis

results selecting the N byte string from the back tended to

be somewhat better than extracting it from the front for any

dataset and for N size. Although they are not significant, it is

considered that these areas contain more features that serve

as clues for discrimination. We qualitatively examined the

location of the files constituting APK file. Note here that APK

file is composed of multiple files and compressed. However,

we observed the position of constituting files in APK file con-

sidered to be important (such as AndroidManifest.xml which

administers easy accessibility of human beings and classes.dex
which is the executable file itself) is not necessarily included in

the analysis N -length target. From the discrimination accuracy

obtained, it is thought that our method captures some patterns

that are difficult for human beings to directly interpret in the

compressed files. In near future, we will investigate this in

detail.

V. CONCLUSION

We proposed an accurate and practical light-weight malware

detection method. Our method uses a shallow 1-D CNN and

only analyzes a small portion of raw APK file without de-

compression. We confirmed from our experiments using plural

datasets that malware can be identified with an accuracy of 96-

97% on average by only analyzing the last 1 KB (N=1024) of

the raw APK file. We assume our CNN appropriately captures

some of key features of malware, while we could not confirm

them at the moment because the APK file is a compressed and

interpretation of string is intractable. We would like to analyze

further in near future.

ACKNOWLEDGMENT

This research was partially supported by the Ministry of

Education, Culture, Science and Technology of Japan (Grant

in Aid for Fundamental research program (C), 17K8033, 2017-

2020).

REFERENCES

[1] Operating System Market Share Worldwide — StatCounter Global Stats,
http://gs.statcounter.com/os-market-share. [Accessed: 26- Nov- 2017].

[2] 8,400 new Android malware samples every day,
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-
android-malware-samples-every-day. [Accessed: 26- Nov- 2017].

[3] T. K. Barsiya, M. Gyanchandani, and R. Wadhwani,“ANDROID MAL-
WARE ANALYSIS : A SURVEY PAPER,” International Journal of
Control, Automation, Communication and Systems, vol. 1, no. 1, pp.
35–42, January. 2016.

[4] N. Milosevic, A. Dehghantanha, and K-K. R. Choo,“Machine learning
aided Android malware classification,” International Journal of Com-
puters & Electrical Engineering, vol. 6, pp. 266–274, July. 2017.

[5] M. Damshenas, A. Dehghantanha, K-K. R. Choo, and R. Mah-
mud,“M0Droid: An Android Behavioral-Based Malware Detection
Model,” Journal of Information Privacy and Security, vol. 11, no. 3,
pp. 141–157, Sep. 2015.

[6] M. Yang and Q. Wen,“Detecting Android Malware by Applying Clas-
sification Techniques on Images Patterns,” International Conference on
Cloud Computing and Big Data Analysis, pp. 344–347, 2017.

[7] A. Oliva and A. Torralba,“Modeling the shape of the scene: A holistic
representation of the spatial envelope,” International Journal of Com-
puter Vision, vol. 42, no. 3, pp. 145–175, 2001.

[8] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, “Drebin:
Efficient and Explainable Detection of Android Malware in Your
Pocket,” in Proceedings of the 20th Annual Network & Distributed
System Security Symposium (NDSS), 2014.

[9] M. Spreitzenbarth, F. Echtler, T. Schreck, F. C. Freling, and
J.Hoffmann,“MobileSandbox: Looking Deeper into Android Applica-
tions,” 28th International ACM Symposium on Applied Computing
(SAC), pp. 252–276, March. 2013.

[10] H. Jiang, J. Nagra and P. Ahammad,“SoK: Applying Machine Learning
in Security - A Survey,” CoRR, abs/1611.03186v1, 2016.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,“Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, pp. 2278–2324,
November. 1998.

[12] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Advances in Neural Infor-
mation Processing Systems, vol. 25, pp. 1097–1105, 2012.

2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA 2018), 9 -10 March 2018, Penang, Malaysia

978-1-5386-0388-8©2018 IEEE 103



[13] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional net-
works for text classification,” Advances in Neural Information Process-
ing Systems, pp. 649–657, 2015.

[14] D. Shimada, R. Kotani, and H. Iyatomi, “Document classification
through image-based character embedding and wildcard training,” IEEE
Proc Big Data, pp. 3922–3927, 2016.

[15] J. Bradbury, S. Merity, C. Xiong, and R. Socher, “Quasi-RecurrentNeural
Networks,” CoRR, abs/1611.01576, 2016.

[16] T. H. Huang and H. Kao, “R2-D2: ColoR-inspired Convolutional
NeuRal Network (CNN)-based AndroiD Malware Detections,” CoRR,
abs/1705.04448v1, 2017.

[17] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath,“Malware
Images: Visualization and Automatic Classification,” International Sym-
posium on Visualization for Cyber Security, no. 4, Jul. 2011.

[18] S. Yue, “Imbalanced Malware Images Classification: a CNN based
Approach,” CoRR, abs/1708.08042, 2017.

[19] F. C. C. Garcia, F. P. M. II, “Random Forest for Malware Classification,”
CoRR, abs/1609.07770, 2016.

[20] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware Detection by Eating a Whole EXE,” CoRR,
abs/1710.09435, 2017.

[21] M. Leeds, M. Keffeler, and T. Atkison, “A Comparison of Features for
Android Malware Detection,” Proceeding ACM SE ’17 Proceedings of
the SouthEast Conference, pp. 63–68, 2017.

[22] S. Ioffe, and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” CoRR,
abs/1502.03167, 2015.

[23] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep Ground Truth Analysis
of Current Android Malware,” Detection of Intrusions and Malware &
Vulnerability Assessment, pp. 252–276, July. 2017.

[24] Appsapk, http://www.appsapk.com/. [Accessed: 26- Nov- 2017].
[25] Apkpure, https://apkpure.com/. [Accessed: 26- Nov- 2017].
[26] VirusTotal, https://www.virustotal.com/. [Accessed: 26- Nov- 2017].

2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA 2018), 9 -10 March 2018, Penang, Malaysia

978-1-5386-0388-8©2018 IEEE 104


