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Abstract—Plant diseases are the major problem in the 
worldwide agriculture sector. Therefore, the early detection is 
essential for reducing economic losses and mitigating the 
seriousness of the global food problem. Some fast and accurate 
computer-based methods have been applied to detect plant 
diseases. However, as far as our best knowledge, all those 
methodologies only accept a narrow range image, typically one or 
limited number of target(s) are in the image frame as their input. 
Thus, they are time-consuming and difficult to be applied for on-
site wide range images (e.g. images or videos from stationary 
surveillance camera). In this paper, we propose leaf localization 
method from on-site wide-angle images with a deep learning 
approach. Our method achieves a detection performance of 78.0% 
in F1-measure at 2.0 fps. 

 Index Terms—deep learning; plant disease; plant diagnosis; 
convolutional neural networks; object detection. 

I.  INTRODUCTION 
Plants have been faced with many dangerous diseases which 

cause a serious reduction in quality and quantity of agriculture 
products. Therefore, detecting and preventing plant diseases 
promptly is essential to resolve this issue. In general, plant 
diagnosis is performed with visual inspection by experts and 
biological examination is second choice if needed. They are 
usually expensive and time-consuming. Several computer-based 
methodologies have been applied to detect plant diseases based 
on their leaf images [1-6]. Mohanty et al. [1] analyzed 14 kinds 
of plants from PlantVillage dataset [7] with convolutional neural 
networks (CNN) and attained over 99% of classification 
accuracy on images in the research environment (i.e. each leaf is 
manually cropped and put it on uniform background). Wang et 
al. [2] applied transfer learning technique on the same 
PlantVillage dataset and shows an accuracy of 90.4%. Fujita et 
al. [3] used their own in-field cucumber leaf dataset (seven types 
of diseases and healthy) and analyzed them with CNN. They 
showed an average of 82.3% accuracy under various 
background and photographic conditions. The authors in [4] 
used a CNN-based system to identify 13 types of diseases in five 

crops using images downloaded from the Internet and got the 
overall 96.3% of accuracy.  

Some methods investigate not only detecting the diseases of 
plant, but also localizing their involved areas. In machine 
learning and image processing field, object detection and 
localization recently have much attracted attention and many 
promising methods have proposed [8-11]. Most of the state-of-
the-art methodologies are designed jointly worked with or 
implemented on CNNs and demonstrated brilliant performance. 
As application research on plant diagnosis, Fuentes et al. [5] 
used these CNN-based systems (e.g. pre-trained network 
combined with Faster R-CNN [8]), which performed object 
localization and diagnosis processes simultaneously. They used 
their own annotated tomato leaf images and their system attained 
86.0% of mean average precision. Lu et al. [6] applied fully 
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Fig. 1. The comparison between the proposed system input images (a, b, c, 
d, e) and wide-angle images (f). 
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convolutional networks for wheat disease database 2017 
(WDD2017) and their system achieved 98.0% of mean 
recognition accuracy.  

These studies have achieved excellent performance. 
However, they are only effective for private or small-scale 
facilities, while we believe they still have a room need to be 
addressed for practical situations. Fig. 1 shows examples of 
typical images used in literatures; clear background (a) in [1, 2], 
and in-field images (b)-(e) in [3-6], respectively. Recent 
sophisticated systems accept wide variety of background, but all 
of them are narrow range image, i.e. the regions of interests 
(ROIs) are located in the center of the input. Therefore, 
diagnosing on-site images (e.g. the images are taken with real 
condition by surveillance cameras, (see Fig. 1(f)) requires steady 
work and thus is time consuming. When assuming a 
development of practical plant disease detection system, solving 
this issue is essential. 

Further, diseases caused by molds or other visible symptoms 
shown in literatures [5, 6] tend to have clear boundary and thus 
are relatively easy to identify. Abovementioned simultaneous 
localization and identification works well for these tasks. But as 
we experienced, on the other hand, plant symptoms are highly 
diverse, especially when they are infected with virus which are 
critical and urgent treatment (removal) is necessary. Symptoms 
of viral disease appear all over the plant surface but they often 
hardly discernible. Similar discussion also applies to the 
detection of initial symptoms. Therefore, simultaneity process 
has difficulty to do so especially target image is wide-angle in 
practical situation. To the best of our knowledge, there is no 
literature providing systematic solutions on this. In such 
problem setting, the ROIs detection should be developed and 
performed independently as the front of the classification part 
followed by. 

We also experienced that the detection of ROIs of plant (e.g. 
leaf detection) from wide-angled image is more difficult than 
commonly seen object detection tasks such as face detection, 
pedestrian detection, etc. This is because, in leaf detection task, 
the object to be detected and its background is the same as its 
heart and, in addition that they have often heavily overlapped 
each other. 

In such backgrounds, we propose an easy and practical 
method to localize whole cucumber leaves in wide-angle images 

based on CNN with sliding windows. Our strategy focuses only 
on the detection of ROIs (i.e. fully leaf) to be diagnosed with 
following diagnosis stage separately developed. In practical, the 
diagnosis part not frequently but need to be updated as occasion 
arises, and this is also part of the basis of our motivation. 

II. PROPOSED LEAF DETECTION SYSTEM 
The objective of this system is to localize the “fully leaf” part 

from the input image. For clarity, the definition of “fully leaf”, 
“not fully leaf”, and “none leaf” is as follows: “Fully leaf” 
indicates the region contains almost whole leaf (qualitatively 
more than 80%). “Not fully leaf” and “none leaf” are the regions 
contains part of a leaf and none leaf object (i.e. background), 
respectively. 

Fig. 2 shows the whole schematics of the practical plant 
diagnosis system included our proposed leaf detection system 
(surrounded by red dotted line). It is designed to be combined 
with the external diagnosis system behind (surrounded by black 
dotted line). Leaf detection consists of 3 steps. Firstly, given a 
wide-angle image, our system extracts a numerous candidate 
boxes that may contain fully leaf regions. Secondly, specially 
trained CNN classifier analyzes those boxes to find location of 
fully leaf (i.e. select boxes identified as fully leaf). Finally, the 
non-maximum suppression (NMS) is used to remove the 
overlapping bounding boxes. The detected fully leaf regions (red 
boxes) will be diagnosed by the following external diagnosis 
systems. 

A. Exhaustive search for leaf candidates 
To detect fully leaf regions to be diagnosed from wide-angle 

image, the exhaustive search will be performed on it with 
multiple window sizes.  Based on our preliminary experiments, 
we found that it does not need to perform this process on real 
resolution input image (2976×2232 in this experiment, detailed 
in later). Thus, the reduced resolution domain (200×150) is used 
to be applied with different window sizes. Concretely, eight 
types of searching window size S×S (S=20, 25, 30, 35, 40, 45, 
50, 55) were used to search on the resized image with stride size 
20% of their edge. They correspond to between the range of 
roughly 1/10 and 1/4 of major axis of the image and their size in 
original resolution satisfies the required input size of widely 
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Fig. 2. The schematics of the practical leaf diagnosis system included our proposed leaf detection system (surrounded by red dotted line), and the external 
diagnosis system (surrounded by black dotted line). 
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available pre-trained CNN models (e.g. Alex-net [15], VGG 
[16], Res-net [17], etc.).  

Since the reduced domain is small, exhaustive search 
combining with our light weight CNN model makes the 
processing time fast enough; nearly real-time on GPU. Note that 
we’ve already investigated the optimization for sliding windows 
to eliminate not small redundant convolution process (i.e. 
calculate the convolution on the whole input image). It 
significantly reduces the amount of total calculation but gain of 
processing time is trivial in our task due to slow memory 
translation on GPU. We therefore choose simple strategy here. 
The detail of our CNN model and processing time will be in the 
following sections. 

B. The proposed CNN for leaf detection 
Our CNN for leaf detection in Fig. 2 is three classes 

classifier, namely it discriminates input image patch cropped by 
exhaustive search as either of “fully leaf”, “not fully leaf” or 
“none leaf”. The objective of this study is to determine the 
boundary box of “fully leaf”, which is acceptable for the 
following diagnosis step. Note that both locations of “not fully 
leaf” and “none leaf” should not be detected. Since the 
appearance and image property of them are completely 
different, we left two different classes even if they should be 
rejected. 

1) Dataset for training the CNN 
A total of 1.44 million image patches, consisting of 480,000 

for each class were created for training the CNN. For “fully 
leaf” class, the dataset of 60,000 images was given by Saitama 
Agricultural Technology Research Center, Japan. Each image 
is square image that contains a single cucumber leaf roughly in 

the center and surrounded with various backgrounds (see Fig. 
3(a)). This dataset was augmented by cropping center and 
clockwise rotation. For detail, firstly, we made a copied version 
of the original dataset, then crop its image center. This cropping 
process removes a part of background which lies in the border 
of image in order to highlight the ROIs (cucumber leaf). 
Secondly, for the cropped dataset, each image now contains its 
center leaf with the width and the height now reduced to 75% 
and 87.5% compared to the original image, respectively. 
Finally, each of those original and cropped images are rotated 
clockwise with the incremental step size of 90 degrees. The 
total number of “fully leaf” images now becomes eight times 
larger with 480,000 images (60,000×2×4). 

 
For “not fully leaf” class, each of abovementioned “fully 

leaf” images (original and cropped one) was divided into 
quarters, i.e. total 120,000×4=480,000 images. Here, the same 
leaf is included both in “fully leaf” and “not fully leaf” datasets. 
This strategy is expected to help boosting the discrimination 
performance between those classes rather than using 
completely different dataset since under our situation, those 
leaves have overlapped each other. For “none leaf” class, 
480,000 images were collected randomly from ImageNet 
dataset [12]. 

(b) (c) (a) 
Fig. 3. The dataset for training the CNN model. From left to right, (a) original 
and cropped images of “fully leaf”, (b) “not fully leaf”, and (c) “none leaf” 
from ImageNet dataset. 

Fully leaf 

Not fully leaf 

None leaf 

conv1 conv2 conv3 pool1 pool2 FC 

Fig. 5. The example of ground-truth image in “wide-angle” images dataset. 

Fig. 4. The proposed CNN architecture consists of 7 layers (6 hidden layers 
and 1 output layer). 

TABLE I.  THE PROPOSED CNN ARCHITECTURE 

Layer name and output size 
[width×height×depth] 

Detail (filter size, num. of filters, 
padding, stride) 

input – [16×16×3] N/A 
conv1 – [16×16×32] [3×3], 32, 1, 1 
conv2 – [16×16×64] [3×3], 64, 1, 1 
pool1 – [8×8×64] [2×2], 64, 0, 2 
conv3 – [8×8×64] [3×3], 64, 1, 1 
pool2 – [4×4×64] [2×2], 64, 0, 2 
FC [3×1] [1×1], 30, 0, 1 
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This dataset is used for training and testing the CNN. The 
training examples for “fully leaf”, “not fully leaf”, and “none 
leaf” are shown in Fig. 3 (a), (b), and (c), respectively. 

2) The proposed CNN architecture 
In our preliminary experiments, the size of CNN input 

image patch was firstly explored. The CNN was trained with 
some input sizes namely: 56×56, 32×32, 28×28, and 16×16; 
where we found that the CNN with 16×16 input was fast, and 
accurate enough for our system. 

Architecture of the proposed CNN is shown in Fig. 4 and 
Table I. It accepts a color image with 16×16 pixels as the input 
and consists of six hidden layers and one output layer with three 
units. The hidden layers have three convolution layers as conv1, 
conv2, and conv3, two Max-pooling layers (pool1, pool2), and 
fully connected (FC) layer which has 30 units. The dropout 
technique [13] with the ratio of 50% was used to weights 
between pool2 and FC. Note that batch normalization [14] is 
applied after each convolutional layer and the rectified linear 
unit (ReLU) is used as the activation function. 

III. EXPERIMENTS AND RESULT 

A. Training the CNN 
Totally, 1.44 million images were divided into 60% of 

training set (864,000 images) and 40% of testing set (576,000 
images). Each dataset has the same amount from three classes. 
The batch normalization with the batch size of 300 was used to 
train the classifier within 20 epochs. Training of our CNN model 
is fast and required only 10 minutes on our environment with 
Core i7-3770K CPU, 16GB RAM, and GTX 1080Ti GPU. The 
accuracy of our CNN on test dataset was 96.1%, whereas 93.1% 
for training dataset. This result confirmed low training gap 
between them. 

B. Testing the whole system 
For testing the whole system, 100 wide-angle on-site images 

were collected, each of which has 2976×2232 pixels in the size 
and contains multiple leaves. They were taken by Sony DSC-
RX100 camera in daytime with various conditions. We refer this 
as “wide-angle” images dataset for clarity. To evaluate our 
system, total of 2,571 fully leaves on these images were 
carefully annotated with bounding boxes and were used as 
ground-truth. Fig. 5 shows an example of one ground-truth 
image from “wide-angle” images dataset. 

For each image, our exhaustive search extracts 4,283 boxes 
consisting of various window sizes. Then, our CNN is used to 
classify all extracted boxes. After that, NMS is applied to 
remove the overlapped boxes. Concretely, given all scored 
boxes after classification, the NMS will reject a box if it has 
lower score than a selected box and the intersection-over-union 
(IoU) between them is larger than 0.2.  

F1-score criteria is used to measure the performance of our 
system. Given the result bounding boxes and ground-truth, the 
F1-score is calculated by the following equations: 

 

where: 
 =  

 
 =  

 A detected box is considered as a correctly detected where 
the IoU of that box and corresponding ground-truth box is equal 
or larger than 0.5 - commonly used in the evaluation of object 
detection studies. Fig. 6 shows our result on several “wide-
angle” images. We achieved the average 80.8% of precision, 
75.3% of recall, and 78.0% of F1-score. In additional, our 

P: 0.750     R: 0.750 P: 0.632     R: 0.800 

P: 0.929     R: 0.813 P: 0.894     R: 0.810 P: 0.933     R: 0.824 P: 0.910     R: 0.833 

P: 0.615     R: 0.571 P: 0.810     R: 0.542 

Fig. 6. The detection result of leaf locations. Precision (P) and recall (R) are shown on each result. 
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system takes around 0.5 seconds to do all the detection process 
per image.  

IV. DISCUSSION AND CONCLUSION 
This paper presents a simple and accurate leaf regions 

detection system with high affinity with other existing disease 
diagnosis systems. We confirmed that the performance of 
78.0% in F1-score is sufficiently acceptable for this task from 
visual assessment. 

Precision and recall are trade-off criteria. Considering the 
practical application of whole plant diagnosis schema in Fig. 2, 
it is not necessary to detect exactly the whole fully leaf from the 
images. In the fact that we need to detect some of, or at least 
one infected leaf per disease in the image. This is because 
nearby leaves might have the same disease and the prime 
objective of our system is to help early detection of disease, and 
this helps one can take detailed examination.  From this point, 
we can tolerate some false negative. Conversely, we should not 
pass completely wrong area to the classifier followed by 
especially when the following classifier is not so robust. That 
is, we need a certain level of precision. Therefore, appropriate 
control of balance between false positive and false negative is 
required. Considering these facts, we think the current balance 
(precision=80.8%, recall=75.3%) is considered reasonable. 

In addition, using small input CNN model (i.e. 16×16) with 
reduced searching domain is fast (2.0 fps) and therefore, the 
processing time does not affect much on the processing 
performance of the diagnosis systems behind. 

We achieved a promising detection performance on 
practical on-site images. On the other hand, however, almost all 
of leaves in wide-angle on-site images used in this study are 
healthy ones. In near future, we will investigate and evaluate 
our methodologies in other practical environments with many 
infected leaves and build an end-to-end practical plant 
diagnosis system. 
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