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Abstract—Image-based autonomous diagnosis for plants is a
difficult task since plant symptoms are visually subtle. This
subtlety leads to the system overfitting as it sometimes responds
to non-essential parts in images such as background or sunlight
conditions. Thus, this causes a significant drop in performance
when diagnosing diseases in different test fields. Several data
augmentation methods utilizing generative adversarial networks
(GANs) have been proposed to address this overfitting problem.
However, performance improvement is limited due to the limited
variety of generated images. This study proposes a productive
and pathogenic image generation (PPIG) technique, a framework
for generating varied and quality plant images to train the
diagnostic systems. PPIG is comprised of two phases: the bulk
production phase and the pathogenic phase. In the first phase,
a number of healthy leaf images are generated to form the
basis for the generation of disease images. Then, in the second
phase, the symptomatic characteristics are added to the leaf part
of the generated healthy images. In this study, we conducted
experiments to evaluate PPIG using test images taken in different
fields from the training images, assuming six disease classes
of cucumber leaves. The proposed PPIG can generate natural-
looking, healthy and disease images, and data augmentation using
these images effectively improved the robustness of the diagnostic
system. Experiments on 8,834 test images taken in different fields
from 53,045 training images show that our proposal improved
the disease diagnostic performance from the baseline by 9.4% for
the macro-average F1-score. Moreover, it also outperformed the
previous cutting-edge data augmentation methodology by 4.5%.

Index Terms—data augmentation, plant disease diagnosis,
generative adversarial networks, image processing, deep learning.

I. INTRODUCTION

Plant diseases cause lower yields and a decline in the value
of agricultural commodities. It is estimated that more than
40% of the world’s food crop is lost due to plant pests
and diseases [1]. Therefore, early detection of diseases for
appropriate measures such as applying pesticides and thinning
plants is required. However, the current diagnosis of plant
diseases is usually based on visual observation by experts and,
if necessary, genetic testing at a specialized institution, which
is costly in terms of human, finance, and time.

For this reason, the development of inexpensive automated
systems for plant disease diagnosis using machine learning
has been carried out. In 2015, one of the first develop-
ments of an automatic disease diagnosis system using deep
learning technology for cucumber leaf images taken in the
field was proposed [2]. Since then, with the rapid spread of
deep learning technology and the popularity of PlantVillage
dataset [3], a large-scale open dataset of plant diseases, many
deep learning-based diagnostic systems have been proposed
one after another, and have achieved very good classification
performance [4]–[7]. However, at the time, the leaf images
from this dataset were pre-cropped and placed on a plain
background. Therefore, a significant drop in the classification
ability has been reported due to the dissimilarity between the
characteristics of the input images in a practical environment
and the images in the dataset [4], [8].

For practicality, studies using images taken in actual
fields [7], [9] have become the mainstream, and they have
reported excellent diagnostic performances. Studies using ob-
ject detection models such as Faster R-CNN [10] and single
shot multibox detector (SSD) [11] have also been carried out
to detect disease areas in slightly wide-angle images of many
objects, such as leaves in actual fields [12]–[15]. However,
most of these conventional studies conflate groups of images
were taken and divide them into training and test data for
evaluation, resulting in evaluation with images with similar
conditions (i.e., background, angle, sunlight exposure, etc.) to
the images included in the training data. Thus, the “latent sim-
ilarity” between training and test data could lead to the model
overfitting. We have recently pointed out from our large scale
and multi-site experiments that the classification performance
is significantly reduced when tests from completely different
locations than the training data [13], [14], [16]. We believe
that the cause of model overfitting is largely attributed to the
similarity of background between the datasets. This could be
a distraction that makes the model sometimes respond to the
background rather than target leaf areas [16], [17].

One way to reduce this problem is to enrich the diversity of
image backgrounds of the training data. However, it is not that



easy to collect sufficient variety of disease data for training
in practice. Recently, a few data augmentation (DA) meth-
ods using generative adversarial networks (GANs) [18] for
automated plant disease diagnosis have been proposed [19]–
[22]. All of those methods were designed based on the deep
convolutional generative adversarial networks (DCGAN) [23]
to directly generate more training data from noise. Although
they showed a promising approach, they are not reliable in
practice usage since they trained their methods using the
PlantVillage dataset [3]. As we mentioned earlier, each leaf
image in that dataset has an uniform background, and thus,
the variety of generated backgrounds has no improvement.

More studies on DA for practical in-field images diagnosis
using an image-to-image transformation method so-called Cy-
cleGAN [24] that performs unsupervised domains transforma-
tion have also been utilized [25], [26]. Those studies applied
CycleGAN to generate diseased leaf image from healthy data
thanks to their sophisticated style transformation function.
However, since CycleGAN transforms the entire image, the
generated images quality are not satisfactory because the
appropriate areas to be given disease signs are not taken into
account, and unexpected changes are made to the background.
In addition, the distribution corresponding to the image gen-
erated by this method is considered to be a interpolated point
in the domain of the generated image. Therefore, the effect of
applying these generated images as DA is limited.

To solve that problem, Cap et al. proposed an improved
version of CycleGAN called LeafGAN to transform healthy
cucumber leaf images to diseases [27]. LeafGAN applies
the transformation to only the leaf region using background
segmentation masks produced from a weakly supervised learn-
ing method. Therefore, the background information of the
healthy image can be kept in the transformed image, and
thus the quality of the generated images is much better than
the originals and their distribution is different from either the
original healthy or diseased domain. But since LeafGAN is
a one-to-one corresponding image transformation model, the
number of generated images highly depends on the number of
base healthy images.

We hypothesize that if we could generate a larger number of
healthy images, we could increase the diversity of generated
disease images, which could be used as an effective DA
process. In this study, we propose productive and pathogenic
image generation (PPIG) - a two-phase noise-to-image genera-
tion method that addresses the lack of image diversity problem.
The main idea of the proposed PPIG is to first generate several
healthy images from noise as a base image from which the
features of the disease will be transferred (bulk production
phase). The disease symptoms are then transferred to the
region of interest (i.e., leaf region) of the large number of
healthy images generated in the former phase using an image-
to-image transformation models (pathogenic phase).

With this approach, we can use the PPIG as a useful DA
technique and generate an infinite number of disease images
with much more diversity. We observe that our proposal
not only produces natural and diverse images but also helps
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Fig. 1. A number of healthy images are generated during the
bulk generation phase, each of which is transformed into a
disease image during the pathogenic phase

boosting the disease diagnostic performance on unseen test
data by using the generated images as training resources.

II. METHOD

In this study, we propose a two-phase method for gener-
ating diverse and massive images using two different GANs
methods. Fig. 1 shows an overview of our system. Our method
can generate a wide variety of images for fine-grained classes
(i.e., diseased leaves). We use the method as a DA technique
to improve the discrimination performance.

The proposed PPIG consists of two phases: (1) bulk pro-
duction phase and (2) pathogenic phase. In the first phase,
realistic healthy leaf images are generated from noise using
styleGAN2 [28], which is the state-of-the-art GANs method
for generating high-definition images. In the second phase,
we use models that has been trained to transform healthy
↔ diseases and add disease characteristics to the real or
generated healthy leaf images. These phases make it possible
to obtain many diseased leaf images from various healthy
images generated without restrictions.

A. Bulk production phase

In the diagnostic problem of plant diseases occurring on
leaves, analysis of the leaf region in the image is essen-
tial. Diseased leaves change from their original healthy leaf
state. Therefore, this phase produces high-resolution images of
healthy leaves with no disease signs as inputs for the second
phase.

In this study, the generation was performed using style-
GAN2 [28] which is a state-of-the-art GANs-based image gen-
erator that can generate high-definition images. This phase’s
input is a noise vector, and the output is a generated pseudo
healthy image.

B. Pathogenic phase

In this phase, we add disease characteristics to the leaf
region in images of various pseudo-healthy leaves generated in
the previous process to realize “disease initiation processing.”



1) General outline: To realize the function of this phase,
disease transformation models based on LeafGAN [27], a
modified version of CycleGAN for automatic plant disease
diagnosis, are used. LeafGAN is a method for generating
images by adding symptoms only to the leaf region. This
method not only improves the image quality but also adds
images generated, as DA was effective in training the disease
classifier. The disease transformation model needs to obtain
background mask images for training. While the original Leaf-
GAN uses masks acquired by a weakly supervised learning for
leaf region extraction, in this study, we applied a supervised
method called anti-overfitting pre-treatment (AOP) [16], which
is based on pix2pix [29] and provides more accurate leaf
region segmentation. AOP is reported to have successfully iso-
lated cucumber leaf images from the background automatically
with an F1-score of 98.1% by supervised learning using 8,000
segmentation mask images.

2) Formulaic explanation: In our experiments, the previous
AOP model trained on 8,000 cucumber leaf images was also
used for leaf region extraction. The leaf images x ∈ X and
y ∈ Y are fed into the trained AOP model, and the output
were background masking images Sx and Sy , with healthy
and disease domains are expressed as X and Y.

Similar to LeafGAN, disease transformation models used in
this phase have two generators (G : X → Y and F : Y → X)
and two discriminators (DX , DY ) to perform domains trans-
formation. In training G, discriminator DY identifies whether
the generated image x′ = G(x) is a real image yi ∈ Y or
not. The mapping F and the corresponding discriminator DX

learns to discriminate the generated image y′ = F (y) from
the real image xi ∈ X simultaneously.

In the training of G, the adversarial loss in G : X → Y is
as follows.
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where x′s = Sx � x′, y′s = Sy � y′ and xs = Sx � x,
ys = Sy � y are masked x ∈ X , y ∈ Y .

Similarly, the adversarial loss for F : Y → X is as follows:
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The cycle consistency loss that keeps the two domains con-
sistent is as follows:
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(3)

LeafGAN introduces a background similarity loss, Lbs, in
order to keep the backgrounds of generated images as similar
as original images. Lbs is a term for minimizing the L1
distance of the background area of the original healthy image
and its transformed image. The background image is obtained

TABLE I. DETAILS OF CUCUMBER DATASETS

Class Train Test

Healthy 14,379 1,138
Cucurbit chlorotic yellow virus (CCYV) 4,721 1,248
Melon yellow spot virus (MYSV) 10,670 1,468
Zucchini yellow mosaic virus (ZYMV) 10,210 3,363
Corynespora leaf sopt (CLS) 6,675 491
Powdery mildew (PM) 6,390 1,135

Total 53,045 8,843

by the element-wise product of the input image and the leaf
mask image (i.e., x� (1− S)). Therefore,
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Our final objective function is:
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where λ is a coefficient that determines the balance of loss
term, and we set λ = 10 as in the original manuscript.

III. EXPERIMENTS

A. Dataset

Table I shows the dataset used in this study. These are
cucumber leaf images were taken under strict disease control
at agricultural experiment stations in six Japanese prefectures
between 2016 and 2020; each image shows a single leaf
and has a diverse background. Our data differs from many
other previous studies in that the training and test images
were taken in different locations and are strictly differentiated.
These are classified as three viral diseases (cucurbit chlorotic
yellows virus: CCYV, melon yellow spot virus: MYSV, zuc-
chini yellow mosaic virus: ZYMV), and two fungal diseases
(corynespora leaf spot: CLS, powdery mildew: PM) or healthy.

B. Training the bulk production phase

We collected in a total of 14,379 in-field healthy images
in each of which has a size of 512 × 512 pixels for training
the model. Our healthy generation model’s input is a 512-
dimensional random vector which was generated from a stan-
dard normal distribution, and the output is an image with the
size of 512 × 512 pixels. We followed the best configuration
as used in styleGAN2 [28] (i.e., config-f) to train our model.
The Adam optimizer [30] and the minibatch size of 32 were
applied. The training was finished after 600 epochs. For more
details of training, please refer to the original paper.

C. Training the pathogenic phase

Disease transformation models based on LeafGAN were
trained to generate five types of diseases from healthy images.
The training dataset for each transformation model is the
number of healthy and disease images in the train set, as
shown in Table I. The training of disease transformation
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Fig. 2. Original (top row) and generated leaf images (the rows below). In generated images, the leftmost column shows the
pseudo-healthy images generated in the bulk production phase. The remainder are pseudo-diseased images generated from
pseudo-healthy images with added disease symptoms in the pathogenic phase.

(a) CCYV

(b) Generated (c) Successful
diagnosis

(d) Failure diagnosis

Fig. 3. (a): Examples of original CCYV images. (b): An
example of generated CCYV image. (c) and (d): Examples
of original CCYV test image which was classified correctly
and not by the classifier trained with a dataset augmented by
PPIG (×2).

models in the pathogenic phase was finished after 100 epochs.
For more details of training, please refer to the LeafGAN
paper [27]. For comparison, we also used the same dataset
to train five CycleGAN disease transformation models with
the same condition.

D. Training disease classifiers

The effectiveness of the generated images as DA is eval-
uated using the diagnostic performance of the diseases.
EfficientNet-B1 [31] was used for the plant disease classifi-
cation models, and the input image size was set to 512× 512
pixels. RandAugment [32] was used as the basic DA with
parameters N = 6 and M = 8 based on the results
of preliminary experiments. When training the classifiers,
MomentumSGD [33] was used as the optimization method,
5× 10−5 for the training rate, 1× 10−4 for weight decay, and
0.9 for the coefficient of the momentum term. The F1-score
and micro and macro averages for each class were used as
evaluation indicators.

With each training data in Table I, the generated images
were added to the original train dataset to create augmented
datasets when training the model. In this study, we trained the
following four disease classifiers.
• Baseline: Baseline with the EffictientNet-B1 [31] model

is used. We trained this model for classifying six classes



TABLE II. DIAGNOSIS PERFORMANCE WITH AND WITHOUT GAN AUGMENTATION

Method F1-score [%]

Healthy CCYV MYSV ZYMV CLS PM Macro avg. Micro avg.

Baseline 65.3 76.9 62.1 82.5 52.9 59.2 66.5 71.5
+ CycleGAN 65.1 77.7 64.0 86.2 53.8 66.4 68.9 74.3
+ Pathogenic phase 67.1 79.9 64.4 84.5 59.4 73.4 71.4 75.4

(Proposed) + PPIG (×2) 75.1 75.3 73.2 92.5 59.3 79.9 75.9 81.2
(Proposed) + PPIG (×3) 76.0 76.3 72.2 92.7 55.5 79.5 75.4 81.1
(Proposed) + PPIG (×4) 75.9 75.1 71.9 92.3 57.1 79.8 75.3 80.8

(five diseases; one healthy) of the original dataset from
Table I.

• +CycleGAN [24]: Same as the baseline model but trained
with additional disease images generated by CycleGAN.
For each disease class, we transformed new disease
images from the original healthy data and added them
to train set, and the number of images for each class was
14,379 (number of data in the largest class).

• +Pathogenic phase: Same as the baseline model but
trained with additional data generated from the disease
transformation model of the pathogenic phase. Each
disease class has also been trained with extra generated
images from healthy data, and the number of images for
each class was 14,379. Note that this is comparable to
LeafGAN, in which leaf region extraction was replaced
to AOP.

• (Proposal) +PPIG: The proposed method of this study,
PPIG, was used to generate healthy and diseased leaves.
We used those generated images whose numbers are
multiples of 14,379 for each class as the training data and
evaluate the effect of training amount to the diagnostic
performance.

Thanks to the production phase of the proposed PPIG, more
images can be generated than the original number of data and
can be added the training.

IV. RESULT & DISCUSSION

A. Visual evaluation of generated images

Fig. 2 shows original (top row) and generated leaf images
(the rows below). In generated images, the leftmost column
shows the pseudo-healthy images generated by styleGAN2 in
the bulk production phase. The remainder are pseudo-diseased
images generated from pseudo-healthy images with added
disease symptoms in the pathogenic phase.

Although some of the generated images had unnatural
background areas, the shapes and the veins of the leaves
were reproduced as well as the original images. For the
generated images of the diseased leaves, we can confirm
that the background changes are suppressed, and appropriate
changes are made in the leaf region.

B. Evaluation of DA by generated images

Table II shows a comparison of the disease classification
performance in each scenario. Baseline’s F1-score was 66.5%

on macro average, but augmentation, which doubles the num-
ber of images generated by the proposed PPIG, improved the
performance by 9.4% to 75.9%. This result is 4.5% better
than DA without the bulk production phase and is 7.0% better
than DA with CycleGAN. Similar to the results of the micro
average, our PPIG is also able to achieve 81.2% with a 9.7%
improvement in performance over the Baseline. Therefore,
it is considered that the classifier successfully learned more
variety of distribution expanded by PPIG than the original
images and became robust in classifying data from different
fields. In addition, the constraint of background change in the
pathogenic phase was effective because the pathogenic phase
increases the score of the CycleGAN. The DA effect of PPIG
was highest when the number of images was doubled in the
range of experiments, with a slight decrease when the number
of images was increased by a factor of three or four. The
reason for this is that the diversity of the generated images is
bounded by the distribution of the original images estimated
by the bulk production phase. Thus, classifiers have started to
learn similar generated images.

On the other hand, unlike the other four diseases and health,
CCYV was only as accurate as the baseline, with no DA effect.
Fig. 3 shows typical examples of original CCYV images,
CCYV images generated by PPIG and test images of CCYV
that are correctly or mistakenly identified by the classifier
trained by the PPIG (×2) dataset. Texture shading, which is
a symptom of CCYV, appears clearly in the generated image.
The image was classified correctly; however, the symptom
does not appear strongly in the image classified wrong. Since
many of the generated images show strong symptoms, the
classifier learned by adding them to the images may be more
likely to misidentify weak symptoms, such as early symptoms.
We believe that adjusting the strength of the addition of
symptoms leads to room for improvement in the future.

V. CONCLUSION

In this study, we proposed a productive and pathogenic
image generation (PPIG), a framework for generating varied
and quality plant images, and showed that it effectively im-
proves the cucumber disease diagnostic performance. It was
shown that expanding the training dataset by generating more
number of healthy leaf images and transforming them into
disease images can enhance the classifier’s ability over the
recently reported GAN-based DA methods. We confirmed the



effectiveness of the proposed framework as a DA for automatic
disease diagnosis based on leaves.
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