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Abstract—Although highly accurate automated diagnostic
techniques for melanoma have been reported, the realization
of a system capable of providing diagnostic evidence based on
medical indices remains an open issue because of difficulties in
obtaining reliable training data. In this paper, we propose bulk
production augmentation (BPA) to generate high-quality, diverse
pseudo-skin tumor images with the desired structural malignant
features for additional training images from a limited number
of labeled images. The proposed BPA acts as an effective data
augmentation in constructing the feature detector for the atypical
pigment network (APN), which is a key structure in melanoma
diagnosis. Experiments show that training with images generated
by our BPA largely boosts the APN detection performance by
20.0 percentage points in the area under the receiver operating
characteristic curve, which is 11.5 to 13.7 points higher than that
of conventional CycleGAN-based augmentations in AUC.

Index Terms—data augmentation, 7-point checklist, diagnostic
system, generative adversarial networks.

I. INTRODUCTION

Melanoma is the most serious type of skin cancer, and
it progresses very quickly. The WHO reported 287,723 new
cases and 60,712 fatalities in 2018 [1]. Melanoma is normally
diagnosed using dermoscopy (a dermatological microscope).
However, it requires dermatologist experience, and this some-
times lacks objectivity [2]. For these reasons, many studies on
the development of autonomous melanoma diagnosis systems
using dermoscopy images have been proposed.

Prior to the advancement of deep learning techniques, a
typical system using classical pattern recognition consists of
the following three steps: segmentation of tumor areas [3], [4],
feature extraction based on medical knowledge, and the final
classification [5]–[7]. There have also been some attempts to
estimate well-known medical indicators [8]–[11], such as the
ABCD rule [12] and the 7-point checklist [13].

Despite achieving excellent results, most of these tech-
niques are based on small datasets, so their practicality and
generalization performance are still questionable. Recently,

many studies have reported excellent results, thanks to the
rapid progress of deep learning techniques and the release of
large-scale dermoscopy image datasets [14]–[16]. For instance,
Gessert et al. proposed a high-accuracy skin lesion diagnosis
system [17] that advances ensemble learning of multiple deep
learning models. Kitada et al. proposed an unlabeled der-
moscopy images classifier [18] using semi-supervised learning
and body hair augmentation.

Providing evidence for diagnosis results is very crucial for
making medical decisions, such as the diagnosis of cancer.
Model interpretability has become a more important topic in
recent deep learning studies. Several studies have proposed
explainable melanoma diagnosis systems by utilizing Grad-
CAM [19] to provide potential malignant regions [20] or by
improving the intuitiveness of heatmaps to make the model
more explainable [21]. However, the resulting heatmap is not
necessarily interpretable for users because it is a display based
on the gradient of the discriminator obtained by training and
is not based on medical knowledge. We believe that providing
quantitative diagnosis evidence, such as the 7-point checklist,
can improve model interpretability.

As a related study, Murabayashi et al. [22] proposed a
method to quantitatively estimate each measure of the 7-point
checklist by taking advantage of semi-supervised learning with
virtual adversarial training [23] and multi-task learning [24].
They trained their model on only 226 labeled images with
the 7-point checklist by four dermatologists and 9,124 images
with labels of benign/malignant information. As a result, they
were able to estimate each criterion on the 7-point checklist
with a deviation equivalent to that of a dermatologist, and
the diagnostic accuracy was significantly improved by 7.5%.
However, the quantitative and extensive assessment of these
clinical indicators is still limited because of the lack of large-
scale images labeled with these indicators [22], [25]. Labeling
large datasets with multiple dermatologists is expensive, and
obtaining such datasets is difficult. Thus, addressing the lack



of dataset could improve model performance.
Recently, models based on generative adversarial networks

(GANs) [26] have been successfully used in various fields.
In the application for computer vision, progressive growing
GAN (PGGAN) [27] achieved the synthesis of high-resolution
realistic images by progressively enlarging image resolution
during the training process. CycleGAN [28] learns the relation-
ship between images from two different domains to translate
styles without paired training images; this process has been
applied in a variety of fields.

Some studies have reported improving medical diagnosis
accuracy by increasing the number of training images using
GAN-based image generation models with a limited number
of training data [29], [30]. However, since GAN learns to
estimate the distribution of training data, it cannot expand the
distribution itself because the generated image is basically an
interpolated sample from the dataset [31]. This also applies to
CycleGAN; the variety of generated images is limited because
CycleGAN can only perform one-to-one conversion.

Therefore, in this paper, we propose bulk production aug-
mentation (BPA), which is a framework for generating a large
volume and variety of pseudo-images of the desired category,
and we apply it to the quantification task of the dermoscopic
structure toward an explainable melanoma diagnosis. The pro-
posed BPA can be divided into two phases: (1) bulk production
phase and (2) feature transition phase. In the bulk production
phase, PGGAN augments high-resolution images of the nevus,
which are widely available and have less malignant features.
They are used as the foundation for adding malignant features
in the second phase. Then, in the feature transition phase,
malignant features are added to the generated nevus images
using CycleGAN. With these steps, the system can generate
a large number of varied dermoscopy images with malignant
features.

In the evaluation experiments, we tested the effectiveness of
the proposed BPA framework on the atypical pigment network
(APN), an indicator registered as a major criterion in the 7-
point checklist. For the training images, we used 230 images
labeled as APN and 10,000 nevus images from public datasets.

With respect to the evaluation of our proposed data gen-
eration (i.e., augmentation) framework, direct evaluation by
dermatologists is extremely expensive and infeasible. We
therefore trained two types of classifiers to confirm if we
could improve classification performance by augmenting the
data with our framework. The first type of classifier is the
detectors of APN structures, and we used them to verify how
data augmentation by BPA improves detection performance.
The second type is a melanoma-nevus classifier, which is used
to verify whether the images generated by the APN’s con-
structional features by BPA improves the grade of malignancy
compared with that before the assignment.

II. METHOD

A. The 7-point checklist - preparation

The 7-point checklist is a well-known diagnostic method
using dermoscopy. This checklist requires the identification of

TABLE I
7-POINT CHECKLIST CRITERIA

Major criteria weight

1. Atypical pigment network ×2

2. Blue-whitish veil ×2

3. Atypical vascular pattern ×2

Minor criteria

4. Irregular streaks ×1

5. Irregular pigmentation ×1

6. Irregular dot/globules ×1

7. Regression structures ×1

zz

Fig. 1. Dermoscopy images with atypical pigment network (APN) structures.

seven dermoscopic structures, as shown in Table I. The first
three are categorized as major criteria, and the latter four are
minor criteria. The score for a skin lesion is determined as the
weighted sum of the structures present in it. Using the 7-point
checklist, the total score (TS) is calculated as

TS = #major× 2 + #minor, (1)

where #major and #minor are the number of major and minor
dermoscopic structures present in the image, respectively.
Accordingly, the TS ranges between 0 and 10. If the TS is
greater than or equal to 3, the lesion is considered malignant.
According to the literature, diagnostic accuracy based on the 7-
point checklist by 40 experts is 75.0% in sensitivity and 76.2%
in specificity [2]. In this paper, we focus on the classification
of the APN as one of the major criteria. Fig. 1 shows a typical
example of dermoscopy images with APN structures. While
the APN is a strong indicator of melanoma diagnosis, it should
be noted that the presence of this structure does not necessarily
indicate malignancy.

B. Bulk production augmentation（BPA)

In this paper, we propose the bulk production augmenta-
tion framework (BPA) in order to develop an interpretable
automated melanoma diagnosis system. The proposed BPA
is a novel and effective data augmentation framework when
there are very little supervised data for training. Our BPA is
composed of two phases: (1) the bulk production phase and
(2) the feature transition phase. Fig. 2 shows the flow of our
proposed BPA framework. Each phase uses different kinds



TABLE II
TRAINING DATASETS FOR APN FEATURE DETECTORS TO EVALUATE THE PROPOSED BPA

Dataset nevus nevusG APN APN nevus APN nevusG

(A) baseline 10,000 230
(B) CycleGAN 10,000 230 10,000
(C) simplified BPA 10,000 230 10,000
(D) (proposed) BPA 10,000 †10,000 230 †20,000

† Thanks to the bulk production phase of the proposed BPA, more images can be
generated than the original number of data and can be added to the training.

Latent
vector

Bulk	production	phase Feature	transition	phase

Generated	images	with	
APN	structures	(APN_nevusG)

Generated	large	number	of	
pseudo-nevus	(nevusG)	images

Transfer	desired	(e.g.,	APN)	structure

Fig. 2. The overview of the proposed bulk production augmentation (BPA).

of GANs. The first phase involves the generation of a large
number of nevus images, and the second phase involves the
transfer of APN features to the diverse nevus images generated
in the first phase.

1) The bulk production phase: The bulk production phase
generates a number of diverse images that serve as the basis for
the characterization in the second phase. In this paper, a nevus
(i.e., a benign pigmented skin tumor) is used as the base image.
A nevus has a low proportion of malignant dermoscopic
features and is readily available in large quantities. It also has
attractive attributes as a basis for transferring disease features.
In this phase, based on the nevus images, a large number
of pseudo-nevus images are generated using an adversarial
generation network to further increase diversity. We used
PGGAN [27] for image generation. PGGAN takes a latent
vector (noise) as an input and gradually scales up the image
size, eventually generating various high-quality images.

2) The feature transition phase: The feature transition
phase assigns the desired features to the images generated in
the previous bulk production phase. Specifically, in this paper,
CycleGAN [28] is used to assign APN features to the nevus
training datasets (see Table II). CycleGAN learns the data
distribution of two domains to achieve a style transformation
without the need for image pairs.

The proposed BPA solves the problem of quantity and
diversity of training images. The bulk generation stage is the
cornerstone of this proposal’s data augmentation, as it allows
for the generation of virtually unlimited base images.

III. EXPERIMENTS

In this paper, we used the ISIC 2019 open dermoscopy
image dataset [14]–[16] and an independent dataset presented
in the literature [32]. Specifically, the ISIC 2019 dataset
consists of 12,875 nevi and 4,522 melanomas. The latter

dataset contains 230 images that were identified as having
APN features. For our experiments, the resolution of images
to be used in both phases of the BPA was set to 256×256
pixels.

A. Training the BPA

For the training of PGGAN in the bulk production phase,
a total of 6,816 images of nevi without artifacts, such as
hairs, measures, and pen writings, were selected from the ISIC
2019 dataset to generate high-quality skin tumor images (i.e.,
pseudo-nevus images).

For the training data of CycleGAN in the feature transition
phase, we used the aforementioned 230 dermoscopy images
with APN features and 2,000 nevi (randomly collected) from
the ISIC 2019 dataset, considering the balance in the number
of data.

We followed the default settings from both PGGAN and
CycleGAN to train our models. Please refer to the original
literature for more training details [27], [28].

B. Evaluation the BPA

The diagnosis of APN features is known to vary widely even
among skilled dermatologists, as mentioned in [2]. Therefore,
the of the generation of dermoscopy images requires agree-
ment on the diagnosis of multiple dermatologists. However,
this is impractical for a large amount of output results.
We thus decided to perform the following two indirect but
quantitative evaluations (1) Effect on APN detection; (2) Effect
on malignancy grading.

1) Effect on APN detection: To evaluate the effect of the
proposed BPA framework, deep neural network classifiers
for estimating the presence or absence of APN features
were trained on several groups of training data, and their
performance was compared. As for the evaluation dataset,
134 and 100 dermoscopy images with and without APNs,
respectively, were selected from the ISIC 2019 dataset based
on the agreement of two skilled dermatologists. Note here
that we excluded pigmented skin lesions in acral volar regions
because they have completely different dermoscopic structures
[33], [34]. The APN classifiers were fine-tuned based on the
EfficientNet-B1 network [35], which has been reported to
have excellent classification performance. A comparison of the
conditions of the training data, including the proposed BPA,
is shown in Table II.

For the sake of brevity, the following dataset notation will
be used thereafter:



Pseudo-nevus
(nevusG)

APN_nevusG

Fig. 3. Example of generated dermoscopy images. The upper images are generated nevus images by the bulk production phase (nevusG). The lower images
are transformed with the APN structure from the images by the feature transition phase (APN nevusG).

• nevus: Real nevus images (original training data)
• nevusG: Generated pseudo-nevus images from the bulk

production phase (used as base skin tumor images in the
proposed BPA)

• APN: Real images identified with APN structures (orig-
inal training data)

• APN nevus: Generated images with APN structures by
CycleGAN from real nevus images

• APN nevusG: Generated images with APN structures by
CycleGAN from generated nevus images (nevusG)

Note here that “APN nevusG” is the main outcome of our
proposed BPA.

The conditions (i.e., training datasets for the APN classi-
fiers) can be summarized as follows:
(A) baseline: We used 10,000 real nevus images and 230 real

APN images.
(B) CycleGAN: In addition to the baseline, 10,000 generated

APN images from nevus images (APN nevus) are added
to the training.

(C) simplified BPA: In addition to the baseline, 10,000
generated APN images from nevusG (APN nevusG) are
added to the training.

(D) (proposed) BPA: In addition to the baseline, 10,000 gen-
erated nevus images (nevusG) and 20,000 APN images
(APN nevusG) are added to the training.

The condition (C) is a simplified version of BPA that we
introduced to compare the effect of data augmentation by
BPA with that of the conventional CycleGAN method. With
this condition, we focused on evaluating the efficiency of
generating diverse images by the bulk production phase.

2) Effect on malignancy grading: We evaluated the validity
of the generated APN feature-assigned images from a different
perspective. Because APN features are an indicator of a
melanoma diagnosis, an improvement in malignancy should
be expected if APN features are properly assigned by BPA.
In this experiment, we built a deep classifier capable of
classifying either melanoma or nevus with high accuracy, and
we evaluated whether the classifier increases the detection
degree of malignancy by assigning APN features. To this end,
we used the EfficientNet-B1 [35] network as the backbone of

our grading classifier. The model was trained on 8,000 nevi
and 4,000 melanomas from the ISIC dataset, and we confirmed
that it achieved a sensitivity of 88.8% and a specificity of
94.2% (F1-score: 0.914) for 500 test cases each of nevus and
melanoma.

Our classifier used the sigmoid function as its output, so
the malignancy grading score ranges from 0.0 to 1.0 in our
experiment. We then compared the grading performance of the
trained classifier on the following five datasets: real nevus,
generated nevus (nevusG), generated APN images from the
real nevus (APN nevus), generated APN images from the
generated nevus (APN nevusG), and real APN images.

3) Training details of the classifiers: All the above clas-
sifiers for evaluating our BPA were fined-tuned from the
pre-trained EfficientNet-B1 model. The input images were
resized to 240×240 pixels, which was optimally designed for
EfficientNet-B1. Random resize cropping and random hori-
zontal flip data augmentation were performed with a scale in
the range of 0.5 to 1.0 during the training. Furthermore, Ran-
dAugment [36], a state-of-the-art data augmentation method,
was applied to all models with N = 6 and M = 8 based
on the results of preliminary experiments. Since the datasets
in Table II are extremely imbalanced, we introduced the
weighted loss [37] to address the class-imbalanced problem.
The momentumSGD [38] optimizer with a learning rate of
1×10−5 and weight decay for each epoch of 1×10−6 are used
to train all classifiers. For more details of the configurations
and training, please refer to the original EfficientNet paper
[35].

IV. RESULTS & DISCUSSION

A. Improving APN feature detection with BPA

Fig. 3 shows the example images generated by the proposed
BPA. The generated images are visually natural. A summary of
the detection performance for APN features is shown in Table
III, and their receiver operating characteristic (ROC) curves
are shown in Fig. 4.

For the baseline (A), with a small number of real APN
images, the state-of-the-art EfficientNet is unable to detect the
APN structure despite the introduction of RandAugment data



TABLE III
COMPARISON OF THE DETECTION PERFORMANCE FOR ATYPICAL PIGMENT NETWORK (APN) STRUCTURES

Dataset Accuracy (%) Recall (%) Precision (%) F1 (%) AUC

(A) baseline 53.8 69.4 58.1 63.3 0.522
(B) CycleGAN 59.8 64.9 64.9 64.9 0.585
(C) simplified BPA 58.5 54.5 70.0 60.1 0.607
(D) (proposed) BPA 69.7 77.6 71.7 74.6 0.722
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Fig. 4. Receiver operating characteristic curve for detecting the APN structure.
Our proposed bulk production augmentation (BPA) largely improved detection
performance.

augmentation and the weighted loss. Two CycleGAN-based
models (B and C) improve the APN detection performance by
6.3 and 8.5 points in the area under the ROC curve (AUC),
respectively, whereas the proposed BPA (D) shows a signif-
icant improvement by 20.0 points (0.722 in the AUC). With
the introduction of CycleGAN (B), there is an improvement in
accuracy, but the accuracy obtained is insufficient. The result
from (C), the simplified version of the proposed BPA, which
assigns APN features to the pseudo-nevus images (nevusG),
shows a slight improvement from (B). This may be due to
the generated images being different from any of the original
images, making them more effective in the data augmentation
process. In the proposed framework (D), BPA successfully
generates a large number of diverse and high-quality images
with APN structures (APN nevusG) based on a large number
of base pseudo-nevus images (nevusG) generated in the bulk
production phase. These BPA features are the reason for the
significant improvement in APN detection.

B. Assessing the impact of APN features on grading malig-
nancy

Fig. 5 shows the distribution of malignancy in each image
by the melanoma-nevus discriminator. A value close to 1
indicates a higher grade of malignancy. While the result on
the real APNs has score peaks at 0 and 1, the other results
only have large peaks at 0. This is because a certain number
of nevi have APN features.

The score distribution of the generated APN nevusG images
by our BPA (yellow) shows higher malignancy than that of the
real nevus images (red) and nevusG images (green). It (yellow)
shows a higher probability than APN nevus (blue) in both
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Fig. 5. Comparison of malignancy score distributions. The images obtained
by the proposed BPA show a malignancy distribution more similar to that of
the APN.

areas that are close to grades 0 (benign) and 1 (melanoma),
confirming that the APN features are appropriately assigned.

Overall, the proposed BPA can assign malignancy character-
istics at about the same level as when the feature translation is
performed from real data. The validity of the proposed frame-
work is also confirmed by the fact that the malignancy distribu-
tion of the proposal (yellow) is closest to the distribution with
real APN features (purple). Here, we need to emphasize that
our proposed framework differs from conventional methods
because it can generate a large number of images with the
desired features, which can be a useful data augmentation
method. This advantage led to the significant improvement
in the detection of APN features in our experiments. This
supports the fact that the above (B) is less effective than our
proposed (C) and (D).

V. CONCLUSION

In this paper, we proposed the bulk production augmentation
(BPA) for the realization of an automated diagnosis system that
can present diagnostic evidence based on medical indices. BPA
first produces a large number of data with general features
to be generated and then transfers the desired features from
the previous diverse generated base images. BPA is a novel
and effective data augmentation framework for improving
the interpretability of automated medical diagnosis systems
when there are very little supervised data for training. We
believe that our BPA can be applied for augmenting other
dermoscopic structures data defined in the 7-point checklist
or other criteria.
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