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Abstract—Recent machine learning approaches have shown
promising results in the field of automated plant diagnosis.
However, all of the systems were designed to diagnose single
infections, thus they do not assume multiple infections. In this
paper, we created our original on-site cucumber leaf dataset
including multiple infections to build a practical plant diagnosis
system. Our dataset has a total of 48,311 cucumber leaf images
(38,821 leaves infected with any of 11 kinds of diseases, 1,814
leaves infected with multiple diseases, and 7,676 healthy leaves).
We developed a convolutional neural networks (CNN) classifier
having the sigmoid function with a tunable threshold on each
node in the last output layer. Our model attained on average
a 95.5% classification accuracy on the entire dataset. On only
multiple infected cases, the result was 85.9% and it accurately
identified at least one disease in 1,808 out of the total of 1,814
(99.7%).

Index Terms—Convolutional Neural Networks, Plant Diagno-
sis, Image Processing, Multiple Infections

I. INTRODUCTION

Plant diseases affect agricultural production on a global
scale [1], [2]. Identification and appropriate treatment of the
diseases in their early stage are essential to minimize the
damage. However, plant diagnosis is generally conducted
through visual examination by experts, with subsequent ge-
netic testing applied as necessary; thus, it is expensive and
time-consuming. An accurate, fast and low-cost automated
plant disease diagnosis system is required for solving such
problems.

Recent machine learning approaches to automated plant
diagnosis have shown promising results [3]–[5]. In particular,
the effects of deep learning using models like convolutional
neural networks (CNN) have become understood. They have
attracted many researchers and, as a result, many achievements
have been seen [6]–[12].

Kawasaki et al. [6] proposed an automated cucumber di-
agnosis system with CNN. They demonstrated that the new
methodology did not need to be tackled with essential but
difficult traditional issues such as the extraction of the areas

involved (e.g. leaf) in the pre-processing and embedding the
knowledge of experts in the classification. Mohanty et al. [7]
used 54,306 plant leaf images consisting of a total of 38 classes
of crop-disease pairs from Plant Village [13] and built CNN
models to identify crop and plant diseases. They achieved an
excellent classification accuracy of 99.35%. On the other hand,
all the leaves used in their study were physically cropped and
each leaf was separately placed in front of a uniform coloured
background in advance and photographed. These conditions
are very different to what we observed in the field. In fact, they
noted in their manuscript that the accuracy dropped to around
31% under the different setting from the training images.
In addition, we found a significant number of inappropriate
labels assigned on the Plant Village dataset. This is one of
the hazards of the data collection type open dataset. Liu et al.
[12] proposed a novel apple diagnosis system for classifying
four kinds of diseases based on CNNs. They claimed that their
own CNN model showed the best classification performance
of 97.62% compared with that using well-known CNN models
such as VGG [14] or ResNet [15]. However, their study also
used cropped leaf images as well as the PlantVillage dataset
and thus these systems cannot be directly applied to practical
situations with complex backgrounds, for example.

Along with the development of deep learning techniques
for general object recognition, more practical systems have
been proposed also in this field. Lu et al. [10] proposed a
wheat diagnosing system which performs localization of the
areas involved and diagnosis simultaneously based on a full
convolutional VGG-based [14] network with their own wheat
disease database (WDD2017 Dataset). Their system achieved
a mean recognition accuracy of 97.95%. Fuentes et al. [11]
proposed a detection and identification system for diseases
and pests in tomato with three types of object detection
method (Faster Region-based CNN [17], Single Shot Multibox
Detector [18] based on VGG [14] and ResNet [15]). Their
dataset has a total of 5,000 field tomato leaf images. We think
these systems are practical because their images based on the
system were photographed in the field. However, to the best of978-1-5386-9306-3/18/$31.00 ©2018 IEEE



our knowledge, all of the systems were designed to diagnose
single infections and do not assume multiple infections. In
practice, multiple infections are often seen, but systematic
studies on this have not been proposed so far. The symptoms
of the multiple infections are not an independent sum of each
and have an interaction, especially in the case of viral diseases.
For this reason, the conventional systems cannot handle these
complex cases and would produce undesired output. One
difficulty behind this problem is that creating a reliable dataset
with multiple infections is demanding and costly. There is no
such available dataset in public. Against this background, we
built our own on-site cucumber leaf dataset including multiple
infections and the classifier to address this problem. To the best
of our knowledge, our research is the first systematic study on
automated diagnosis on multiple infections.

II. METHOD

A. Dataset and preprocess

We created our own on-site cucumber leaf dataset including
healthy and diseased leaves with single and multiple infections
to develop a robust diagnosis system. We handled seven viral
(CCYV, CMV, KGMMV, MYSV, PRSV, ZYMV and WMV)
and four fungal (Brown spot, Downy mildew, Grey mould,
and Powdery mildew) diseases. Multiple infected leaves have
two or three diseases from the abovementioned single diseases
(11 disease types). In this study, we made and used 13
combinations of multiple infections based on the consideration
of the actual situation. Table I shows the name and the number
of images in each class in the first and second column.
Our dataset is composed of a total of 48,331 cucumber leaf
images comprising 38,821 single, 1,814 multiple infections,
and 7,676 healthy leaves. These cucumbers were planted
under a strictly controlled environment at Saitama Agricultural
Research Center. The target disease was transmitted in an
isolated environment to avoid contamination.

Each leaf image was photographed under only one loose
requirement; a leaf must be near the middle of the picture.
As the table shows, the variation in the number of datasets in
each class is broad; single and multiple infections are from
250 to 10,210 and 1 to 923, respectively.

Our dataset consists of different size and aspect ratio
images. Therefore, we crop each image to a square at its
center and resize it to 316×316 pixels beforehand in order to
follow the data augmentation process proposed in the literature
[8]. We rotate the images clockwise with the incremental
step size of 20 degrees and then generate their mirror images
with respect to the horizontal axis for data augmentation. In
summary, these processes artificially increase the training data
by 36 times. Finally, we resize all images to 224×224 pixels.

B. Architecture of the classifier

Our CNN-based plant diagnosis system is composed of
eight convolutional and two fully connected layers. This
architecture is designed with reference to the VGG-net [14]
model, and it has been miniaturized in consideration of the
data size. Fig. 1 shows the network architecture. Each fully

Fig. 1. Our model architecture.

connected layer performs a batch normalization [16] and
all the convolutional layers have smaller feature maps than
the original VGG-net [14] to reduce the degree of freedom.
Two fully connected layers have 2,048 nodes each, with a
dropout ratio of 0.5. We optimized the architecture for our
task according to several preliminary experiments. In our
preliminary experiments, our model was 9x faster than the
original VGG architecture with equivalent accuracy.

To classify multiple infections, we omit the soft-max func-
tion at the last output layer of the network and instead utilize a
sigmoid function with tunable thresholds on each node. Since
the number of data in each class is unbalanced, we set the
thresholds for each output value beforehand by applying grid-
search on the F1-score result domain.

III. EXPERIMENT

In our experiments, all performances were evaluated with
the 4-fold cross-validation. In this study, each of the multiple
infections (e.g. WMV + Downy Mildew, WMV + Brown
spot) is treated as an independent class. Namely, we handle
our classification problem as a 25-class classification task
(11 single, 13 multiple diseases and healthy), because the
appearance of a leaf infected with multiple diseases is not
the sum of each disease, as mentioned earlier.

In order to evaluate the classification performance for
multiple infections, we introduce two performance evaluation
criteria for them; the strict evaluation criteria and the weighted
evaluation criteria [19]. The former evaluates the result as
correct only when all the diseases of the target are correctly
detected and allows no false detection. The latter does it in
a weighted manner. For example, if the system detects one
out of three infections, this criterion is counted as 1/3 of a
true positive. This affects both the precision and recall rates.
False detection also reduces the precision. In each criterion,
we calculate the precision, recall, and F1-score. Note here that
the recall for the sum of several classes (e.g. the total of single
infections, total of plural infections, overall) corresponds to the
average accuracy of the total data.

IV. RESULTS

Fig. 2 shows examples of single infection images ((a):
MYSV and (b): ZYMV) and a multiple infection image ((c):
MYSV & ZYMV). Our system correctly identified the left
image as MYSV with a score of 0.859 (decision threshold



Fig. 2. Example of single infection images and multiple infection image.

θMY SV = 0.811), the middle image as ZYMV with 0.729
(θZYMV = 0.726) and the right image as multiple infections
of these two viruses with 1.000 (>0.811) and 0.792 (>0.726),
respectively.

Table I summarizes the performance of our cucumber di-
agnosis model. With the strict evaluation criteria, our model
achieved 95.5% accuracy on average. For the disease cases, the
model showed an average of 94.9% precision and 95.0% for
recall (=sensitivity). Among them, for single infection cases
only, the values were 95.5% and 96.3%, and for only multiple
infection cases, they were 85.9% and 85.1%, respectively.
For healthy cases, our model attained the precision of 98.5%
and the recall (=specificity) of 97.9%. With the weighted
evaluation criteria, these scores were improved, especially in
the multiple infection cases. They reached 93.3% and 93.2%
in precision and recall, respectively.

In the ten categories from the fewer data in the multiple
infection classes (i.e. where the number of training data is
equal to or less than 100), the performance was limited under
the strict evaluation criteria. Nonetheless, our model showed a
reliable performance for all the categories with the weighted
evaluation criteria, and for multiple infection leaves our model
detected at least one disease correctly in 1,808 cases out of
the total 1,814 cases.

V. DISCUSSION

From Table I, we confirmed that our model showed an
excellent diagnosis performance not only for single disease
cases, but also for multiple infection cases (91.1% and 91.7%
in the F1 score with the strict and weighted evaluation criteria,
respectively).

Our model has an output threshold for each class, enabling
the output of multiple infections. In our experiments, the
output of our model was lower than any of the thresholds
of 12 classes on 264 cases (0.68%). Although these data
were incorrectly classified, we consider that the ratio is in the
acceptable range, and the ability of the model to yield “others”
for unknown objects is an important characteristic considering
the diversity of diseases.

We would like to note here that, when we excluded the
multiple infection images from our dataset, the diagnosis per-
formance for those cases dramatically declined and eventually
failed.

Finally, in order to diagnose multiple infections appropri-
ately, the preparation of a reliable dataset is crucial, regardless
of its creation cost. However, the creation of a dataset for

each combination is not practical at all. We will seek effective
learning methods in the future.

VI. CONCLUSION

In this paper, we created our original on-site cucumber leaf
dataset including multiple infections to build a practical plant
diagnosis system. We created our own reliable dataset and
developed a CNN-based classifier having a sigmoid function
with tunable thresholds at the last output layer of the network
instead of the soft-max function. Our model achieved an
excellent diagnosis performance on both single and multiple
infections, with 95.5% accuracy on average and 85.5% for the
strict F1-score on the multiple infections only dataset.
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