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Abstract— Content-based image retrieval (CBIR) is a tech-
nology designed to retrieve images from a database based
on visual features. While the CBIR is highly desired, it has
not been applied to clinical neuroradiology, because clinically
relevant neuroradiological features are swamped by a huge
number of noisy and unrelated voxel information. Thus, ef-
fective dimension reduction is the key to successful CBIR. We
propose a novel dimensional compression method based on 3D
convolutional autoencoders (3D-CAE), which was applied to
the ADNI2 3D brain MRI dataset. Our method succeeded in
compressing 5 million voxel information to only 150 dimensions,
while preserving clinically relevant neuroradiological features.
The RMSE per voxel was as low as 8.4%, suggesting a promise
of our method toward the application to the CBIR.

I. INTRODUCTION

Neurological diseases are the most common cause of
disability in the world [1]. Neuroradiology plays an essen-
tial role in the diagnosis and management of neurological
disorder. Among various neuroimaging modalities, magnetic
resonance image (MRI) of the brain has been widely used
because of the capability to delineate various types of
tissues, anatomical structures, and pathologies within the
brain non-invasively. While huge amount of brain MRIs are
routinely scanned for diagnosis or evaluation of the neuro-
logical diseases and stored in the medical Picture Archive
and Communication System (PACS), usually only linguistic
encoding from the radiologists is stored in the searchable
patient record. Once reviewed by physicians and utilized
for the medical decision making, the stored MRIs are rarely
used for the secondary purpose, although this Big Data that
consists with huge amount of brain MRIs and corresponding
medical records (MRI Big Data) has potential to provide new
evidences about diagnosis and treatment of various diseases.

Modern medicine is evidence based. To improve current
medical practice, efforts have been made to extract clini-
cally relevant information from existing clinical records. The
clinical MRI Big Data, from which diagnostic or prognostic
information could be obtained from MRI-derived features, is
expected to play an essential role in the effort to learn from
past clinical cases to improve cure and care of the future
patients. To fully exploit the value of the MRI Big Data,
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data searching technology is indispensable. Currently, text-
based searching is widely used for the retrieval of medical
images. To retrieve images of interest from a database,
users are expected to have a fair amount of knowledge to
correctly describe image features. However, the verbalization
itself is often demanding, simply because there is too much
amount of information included in one image. Therefore,
a technology designed to retrieve images from a database
based on image-derived features, which is generally called
content-based image retrieval (CBIR), is strongly desired.

Several attempts have been made to apply the CBIR
techniques on 3D images [2], [3], although the applicability
to a general CBIR system is not fully evaluated and therefore
still an open issue. Particularly for the three dimensional
and high-resolution brain MRI, “curse of dimensionality”
problem plagues many CBIR studies, i.e., the number of
dimension, is very large, while that of available cases is
extremely small with respect to that dimension. From the
viewpoint of machine learning, high dimensional data is
difficult to perform discrimination, regression, or clustering
which is deeply involved in CBIR techniques, and an ap-
propriate dimension reduction is essential. However, there
are not many explicit dimensional reduction techniques for
these diagnostic modalities. Yaacoub et al. [4] proposed
dimensional reduction on MRI image with singular value
decomposition (SVD) and least square estimation. Their
method showed superior performance to other methods they
gave, however almost 40% dimensional reduction at the ex-
pense of 20% reconstruction error in average is unsatisfactory
for our purpose. Lyra-Leite et al. [5] obtained low-rank rep-
resentation of MRI image with SVD and attained reasonable
compression performance while preserving visual features.
However, since they focused only per-image compression on
2D image slice i.e. SVD was performed on per slice, obtained
basis vector is different among images, this can not be
used for our general dimensional compression. Compressed
sensing [6], [7] estimates many unknown parameters using
much less observations under the assumption that they have
sparse representation in some orthogonal basis. CS finds
similarities with dimensional reduction from the viewpoint of
utilizing intrinsic low dimensionality of data. CS has mainly
used for reconstruction of images; shortening the imaging
time of CT/MRI and improving image quality. To the best
of our knowledge, on the other hand, CS is not applied for
dimensional reduction for already reconstructed images.

Meanwhile image recognition performance of recent ma-
chine learning techniques, especially convolutional neural
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networks (CNNs) have improved drastically in the field of
computer vision [8], [9]. Improvement in computational re-
sources have enabled manipulation of high resolution images,
and automated recognition of visual features that doctors note
during diagnosis of medical images have become pragmatic.
Furthermore, by extending the function of CNNs that have
shown promising results on 2D images to 3D objects, we
are able to capture 3D objects not as continuous slices
of 2D images, but objects with information of all three
spatial dimensions. Recently, 3D-CNN began to be used
for analysis of 3D modalities; mainly for segmentation of
organs or involved areas in CT [10] and MRI [11], [12].
Hosseini-Asl et al. [13] introduces 3D-CNN approach on a
classification task of predicting Alzheimer’s disease (AD)
using 3D brain MRI. This method has achieved promising
results, exceeding conventional methods that uses image
slice as inputs. However, classifiers specifying to limited
disease types are not applicable to search systems that need
adaptation to biologically and pathologically heterogeneous
clinical cases. By constructing a feature extractor that cap-
tures features of the entire brain, we are able to acquire a
practical feature representation of the input. Furthermore, in
order to quantitatively decide the similarity of the patient’s
brain to past cases, extracted features must be grouped into
sets based on distance metrics by a clustering process.

In this paper, we propose a new and significant di-
mensional compression method for 3D MRI images using
3D convolutional autoencoders (3D-CAE) as an important
element for realization of their CBIR system. Our 3D-CAE
is basically composed of two 3D-CNNs in a mirror image
state. The results were evaluated visually by a board-certified
neurologist who has extensive experience in neuroradiology,
and also quantitatively evaluated by multiple criteria.

Key contribution of this paper are: (1) To our best knowl-
edge, there have been no practical dimensional reduction for
3D brain MRI and we accomplished it with 3D-CAE and
(2) With our method, 3D brain MRI having around 5 million
dimension data is compressed to only 150 dimensions, while
important clues for image diagnosis for typical diseases can
be preserved.

II. METHOD

A. Datasets and Preprocessing

The 3D brain MRI data used for training and evaluation
of the 3D-CAE are a part of the ADNI2 dataset [14]. For
training we used 112 amyloid-positive Alzhiemer’s disease
(AD) cases and 146 amyloid-negative cognitively normal
(CN), whereas for evaluation we used 152 cases of patients
diagnosed as Early Mildly Cognitive Impairment (EMCI).
The MRICloud (www.MRICloud.org) was used to extract
the brain area, to correct intensity inhomogeneity, and to
linearly transform the brain area to the Montreal Neurolog-
ical Institute (MNI) space. Technical details are available in
[15]. The volumetric data was then converted to a 3D tensor
with float values per filled voxel and 0 otherwise. Additional
zero-padding was done to effectively feed the data to our

3D-CAE, converting the tensor size from 150 × 184 × 140
to 160× 192× 160.

B. 3D convolutional autoencoder (3D-CAE)

We took notice of the 3D-CAEs capability to extract
spatial features of the input that are practical for diagnosis.
Given a volumetric representation of the brain MRI as an
input, our 3D-CAE extracts visual features and compresses
to arbitrary dimensional representation. Autoencoder is an
unsupervised learning algorithm that learns an identity map-
ping of the input by minimizing the loss function between
the input and its reconstructed output. It consists of encoding
and decoding, where the encoder will map the input data
x ∈ RD to a feature vector y ∈ Rd and the decoder will
reconstruct back to the original data space z = x̂ ∼ x ∈ RD

(D ≫ d).
We will start the simplest example of autoencoder model

having a single encoder and decoder. The embedding y is
obtained from x by the following equation.

y = f(Wx+ b) (1)

Where, W and b are learnable weights and the function
noted f , is often a non-linear activation function such as
the ReLU function expressed as f(x) = max(0, x). Reverse
mapping to obtain the reconstructed output x̂ is calculated
in a similar manner, taking y as the input. Here W̃ and b̃
are weights used in the decoder.

x̂ = f̃(W̃y + b̃) (2)

Generally, mean squared error (MSE) is used as a loss
function for autoencoders.

E(W ) =
1

D

D∑
d=1

||xd − x̂d||2 (3)

It is important to note that the decoder reconstructs the
original input by using the embedding compressed by the
encoder. If the reconstruction x̂ that is obtained by a trained
AE has a certain degree of similarity with the input x, this
will conclude that the decoder reconstructed by the data
solely from the low dimensional representation y. Therefore,
embedding y captures the visual feature of its input while
representing the input in a smaller dimension.

CAE inherits the concept of the AE, with an exception
that the layers consist of convolution and pooling layers,
components of the CNN widely known for achieving state-
of-the-art results in the field of computer vision.

Local connectivity of convolution layers enable the CAE
to extract local and hierarchical features, ultimately capturing
the global feature of the input by combining the local
features. Thus local connections require much less compu-
tational cost than full connections. Pooling layers are used
to reduce the input size and to add robustness to shift and
position variance. 3D-CAE is an extended CAE composed of
3D convolution and pooling layers, applicable to volumetric
data. Recently, 3D-CAE was applied for noise elimination
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Fig. 1. Input and reconstructed images of varying embedding dimensions

TABLE I
RMSE AND SNR VALUES OF DATA ON 3D-CAE ARCHITECTURES

Depth Dimension RMSE [%] SNR [dB]
AD + CN EMCI AD + CN EMCI

1 614,400 1.91 1.95 25.23 25.01
2 76,800 4.60 4.57 15.90 15.91
3 9,600 6.18 6.14 13.19 13.22
4 1,200 7.49 7.66 11.03 10.63
5 150 7.86 8.45 10.64 9.72

of Low Dose CT and revealed their remarkable performance
comparable to state-of-the-art methodologies [16].

The encoder of our 3D-CAE consists of five pooling
layers each having convolution layers. The decoder recon-
structing the volumetric data from the compressed feature
representation adopts mirrored architecture, using unpooling
and deconvolutional layers for corresponding layers. Each
convolutional layer consists of varying kernel numbers, and
the innermost kernel number determines the dimension of
the embedding.

Since position correction has been performed on the data
during preprocessing, inner convolution layers were specifi-
cally stacked in order to extract more global features of the
input brain MRI. Kernel numbers are fixed to 27 until the
innermost layer of the encoder and decoder, where it is set
to one to squeeze the embedding dimension.

C. Regularization

Generally, the designer of the autoencoder would apply
constraints to the model. This constraint is applied to reduce
the number of parameters within the autoencoder, leading
to a lower degree of freedom thus higher generalization to
unknown data. We implemented a pseudo tied weights for
the 3D-CAE model, in which each weight on the filter of the
decoder are considered as a set, and the matrix having these
sets is transposed to share the weights with the corresponding
layer of its encoder counterpart.

III. EXPERIMENTS

We prepared five 3D-CAE architectures with varying
depths and feature dimensions, and evaluated their recon-
struction performance by calculating the root mean squared
error (RMSE) and signal-to-noise-ratio (SNR) of the input
and reconstructed output. The 3D-CAE were modified such
that the final embedding will have the dimensions d =
614,400, 76,800, 9,600, 1,200 and 150. The RMSE and SNR
of the reconstructed outputs are shown in Table I.

From Table I, increase in RMSE and decline in SNR can
be observed with decreasing dimensionality d.

Fig. 2. Visual assessment on image slices

Fig. 1 shows the visualization of the original input and
corresponding reconstructed image for each embedding di-
mension. Reconstructed volumetric data were converted to
256-greyscale and sliced to create the coronal plane images.

As illustrated by Fig. 1, the lower the dimension was,
the more blurred the reconstructed images were. The brain
surface lost the sharp contour from 9,600 dimensions and
lower.

Since we aim to utilize the embedding for clustering and
search tasks, it is ideal for the embedding to take a small
dimension. Therefore to further evaluate the validity of the
embedding with the smallest dimension, additional visual
assessment was performed by a neurologist on the image
slices.

Representative results from two indivisuals, one with
normal cognition (upper row) and another with Alzheimer’s
disease (lower row), are demonstrated in Fig. 2. The images
reconstructed from 150 dimensions (output images, right
column) demonstrated that the known anatomical features
related to Alzheimer’s disease, such as 1 ventricular enlarge-
ment, 2 widening of the Sylvian fissure, and 3 hippocampal
atrophy, are well preserved in the Alzheimer’s disease. On
the other hand, cortical area, gyrification of which is unique
to each individual, is blurred in the output images.

Detailed line profiles of the region of interest are shown
in Fig. 3. Line profiles were taken from lateral ventricle,
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Fig. 3. Line profiles of region of interest

Fig. 4. Reconstructed images of EMCI data (not trained)

Sylvian fissure, and hippocampal atrophy regions labeled as
1, 2, and 3 in Fig 2, respectively. As illustrated in Fig. 3,
the reconstructed input from 150 dimension representation
roughly traces its original input. Line profile of the hip-
pocampal atrophy region shows the reconstruction of the
brainstem is relatively poor compared to other regions. This
is due to difficulty of image alignment for this region. We
need to address this issue in further study.

Furthermore, our 3D-CAE has the ability to generalize
well with unknown data excluded during training of the net-
work. The input and reconstructed image slices of two EMCI
patients are shown on Fig. 4, where the top image shows
EMCI case visually similar to a cognitively normal patient’s
brain, and bottom showing a case with brain atrophy. As
illustrated on Fig. 4, we can tell that the model generalizes
well with unknown data, extracting unique features of the
input. From the abovementioned, we built the basis of
CBIR systems as the outputs reconstructed by a significantly
compressed representation preserves critical information for
diagnosis. Our dimension reduction method could be used
for various machine learning applications.

IV. CONCLUSIONS

In this paper we proposed a dimension reduction method
using 3D-CAE and reduced the input dimension of the
volumetric input from 4,915,200 to 150 while preserving
features that radiologists would note during diagnosis. We
evaluated our model by visual and quantitative analysis. Our
results show promising establishment of a medical CBIR
system and various machine learning applications using deep

representations.
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