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Abstract—Automatic diagnosis of plant diseases using images
is a fine-grained task, and disease symptoms are often ambiguous
and highly variable. Pre-extraction of the region of interest (ROI)
exhibiting disease symptoms (such as one or more leaves) is
known to have a certain effect on improving accuracy. However,
the ROI extraction at runtime is time-consuming, resulting in
issues of system usability. This paper proposes a new training
method called key area acquisition training (KAAT). KAAT
reduces the variation in prediction results between images before
and after the extraction of the ROI. By directing the model’s
attention to the ROI through learning, KAAT contributes to
improved diagnostic performance without sacrificing execution
time during diagnosis. In the evaluation, we conducted nine class
diagnosis task (eight diseases and healthy) using 77K and 9K
images of cucumber leaves (collected from different fields) for
training and testing, respectively. The proposed KAAT improved
diagnostic accuracy by 3.8% in macro-F1 and 2.0% in micro
accuracy without increasing execution time.

Index Terms—automated plant diagnosis, stability training,
convolutional neural networks, segmentation, ROI

I. INTRODUCTION

According to the Food and Agriculture Organization of the
United Nations (FAO), it is estimated that up to 40% of food
crops are lost each year due to plant pests and diseases [1].
Early detection of pests and appropriate action are therefore
important, but diagnosis requires expert knowledge and ex-
perience and, in some cases of genetic testing. These pose
challenges such as difficulties of availability and prohibitive
time and financial costs. With the recent development of
machine learning technology, reports of research on automatic
diagnosis of plant diseases by means of images using deep
learning began with the analysis of data from actual fields
with a three-layer convolutional neural networks (CNN) [2].
Since then, the PlantVillage dataset, a large-scale open dataset,
has become widely available on the web, and deep learning-
based systems using this dataset have been proposed one after
another. Studies using this dataset have reported numerically
excellent discriminative performance [3]–[7].

However, the training and evaluation data they used from
this dataset reportedly yielded significantly lower discrimina-
tive power under real-world conditions because the leaves used
were pre-cropped images that were analyzed and placed on
a plain background. For example, it has been reported that
when evaluated in a real-world environment different from
the training data, the diagnostic performance, which was over
99%, drops to about 30% [3], [7].

Unlike these methods that analyze data from laboratory
environments, many methods have been proposed in recent
years that are built on originally constructed datasets based on
images collected from actual fields. Most of these systems use
CNNs and assume that the analysis target, such as a leaf or
a fruit, is in the center of a single image, and similarly high
discrimination accuracy has been reported [8]–[15]. However,
there are serious concerns about this assessment, and it has
been pointed out in recent years that the accuracy is far
overestimated compared to the true performance, which is
much lower [16]–[20]. This is because in most of these
reports, the evaluations are conducted by arbitrary partitioning
or cross-validation of the datasets created, which leads to
high potential similarity in the datasets and thus padding of
diagnostic performance.

While plant disease symptoms are often small and am-
biguous in terms of the number of features on the image,
there is also a great deal of variability in appearance within
the same disease category, as well as environment-dependent
diversity unrelated to disease symptoms [20]. In situations
where the intrinsic diversity and number of training images
is limited, deep discriminators, such as CNNs, tend to capture
features that include background, composition, and image
features (brightness, tint) that are usually larger in area than
disease features. It is clear that the accuracy of the evaluation
data is improved in cases where highly similar images, such
as a series of images of the same subject taken in a short
period of time, are divided into training and evaluation data.
Evaluations using a sample much larger than in any other
existing study, with over 220K actual datasets from four crops
and discrimination models more sophisticated than previously
applied, reported nearly 100% diagnostic accuracy for the
same test data, but this dropped to 40-70% when properly
evaluated [20]. This discrepancy highlights the need to obtain
a clear distinction between training and evaluation data in
order to properly evaluate the model. It should be noted
that CNNs are not robust to scaling, and are vulnerable to
the difference in the distance between the camera and the
object to be identified, i.e., the difference in composition. The
bounding box (BB)-type discriminator [21]–[23], which can
simultaneously identify the location of the target of interest
and its content, is more robust to variations in distance to
the target (scaling in the image) than conventional CNN dis-
criminators, and can also present the region of interest (ROI),



making it easier to interpret. This is a promising technology.
However, in the task of plant disease diagnosis [10], [16], [24],
the biggest challenge is the extremely high cost of creating
training labels for labeling each disease symptom; therefore,
in pracice, the number of images that can be used for training
is much smaller than for CNN models. In addition, the training
and evaluation of small lesions in a relatively large image
area requires high-resolution images, which requires a large
amount of computational resources and, especially, execution
time. Therefore, it is important to improve the performance
of conventional CNN-based discriminators in practical system
construction.

On the other hand, in image-recognition problems, pre-
segmentation of ROIs, or regions that are important in re-
alizing the goal, has been routinely performed in various
tasks. Segmentation used to be a difficult procedure that was
task-dependent; however, great progress has been made with
the development of deep learning techniques, especially with
the generative adversarial networks (GAN) [25] technique.
Saikawa et al. [17] proposed anti-overfitting pre-treatment
(AOP), which detects the region to be diagnosed (leaves, fruits,
etc.) based on pix2pix [26] and calibrates brightness and color,
as background is one of the factors that cause overlearning in
automatic plant disease diagnosis tasks. AOP found that the
VGG network, trained on 35,694 cucumber disease images in
eight classes, improved diagnostic accuracy by 12.2% across
9,115 test data, including many early disease symptoms col-
lected over different fields. The effectiveness and importance
of directing the discriminator’s attention to the region of
interest has been confirmed not only intuitively, but also by
the attention mechanism [27] and the vision transformer [28],
which applies this technique to image recognition.

Recent studies using our large-scale data [20] suggest that
the cause of overlearning is not merely in the background of
the image but also in the ROI in a way that is difficult for
us to perceive, indicating that the problem cannot be solved
only by pre-extraction of these regions. Although this large-
scale study showed that training with a large number of high-
resolution images can suppress the effects of background-
based overlearning to some extent, there is no doubt that prior
extraction of ROIs is important for diagnosis. However, when
segmentation is performed as a preprocessing step during
diagnosis, the execution time increases compared to the case
without segmentation and becomes a burden during actual use.

Therefore, this paper proposes a new learning method, key
area acquisition training (KAAT), which focuses on the ROI
by means of the discriminator itself during training and aims
to improve the intrinsic discriminative power. The proposed
KAAT utilizes stability training [29], which builds a model
robust to disturbances, and learns such that the diagnostic
results of the original image x and the image x′ from which
the key ROIs are pre-extracted for diagnosis are the same. This
allows a model trained with KAAT to expect the same results
as if a time-consuming ROI pre-extraction had been performed
at the time of diagnostic execution. This is not only a great
benefit in terms of reduced runtime in practical terms but also

a method that leads to the construction of an essential and
robust system since the discriminator’s attention is directed to
the region containing the lesion features.

II. KEY AREA ACQUISITION TRAINING (KAAT)

This paper proposes key area acquisition training (KAAT),
a learning method to improve the accuracy of essential dis-
criminators and reduce the time required for execution in
order to realize a practical automatic plant disease diagnosis
system. The proposed KAAT is a method inspired by stability
training [29], which increases the robustness of a model by
adding constraints such that the output is the same even when
the input is disturbed.

A. Stability training

Stability training [29] is an effective method for building
discriminators that are robust to input disturbances. Let p(y|x)
(hereafter abbreviated as y, and similarly for other symbols of
probability distribution) be the output probability distribution
of the model for the input x, y′ be the output distribution for
the disturbed input x′ = x+ ξ, and t be the correct label dis-
tribution. Then the stability training minimizes the Kullbuck-
Leibler (KL) divergence between y and y′ in addition to the
original classification task error Lorg. This can be expressed
as

LSTAB = Lorg + λLstab = D(y, t) + λDKL(y, y
′). (1)

Here λ is a hyperparameter to balance the loss term, and D is
a general error measure, such as cross entropy. The difference
between this stability training and general data augmentation
is that the former explicitly adds a constraint such that x and
x′ have the same result so that the discriminator itself is robust
to the explicitly specified disturbances. The original paper
used random perturbation, which is reported to be superior
in terms of generalizability improvement. Learning methods
that actively use disturbances in learning include adversarial
training [30] and its extension to semi-supervised learning,
virtual adversarial training (VAT) [31]. These methods have
been widely used, with excellent accuracy gains reportedly
achieved by calculating and including small amplitude per-
turbation with adversarial directions in the learning process.
Stability training, on the other hand, has a major advantage in
that it allows the designer to design the perturbation according
to the objective task.

B. Definition and Implementation of KAAT

Fig. 1 shows a schematic diagram of the proposed KAAT.
By applying stability training, KAAT learns to ensure that the
output of the model for the original input image x and the
image from which only ROIs (leaves, fruits, etc.) containing
symptoms are extracted x′ is the same. In other words, we
consider that x′ contains a large disturbance ξ that removes
parts of the image other than the ROI.

There is one difference here from the stability training that
KAAT is based on. Stability training implicitly assumes that
the disturbance ξ is small and the difference between y and y′



Fig. 1. Schematics of the key area acquisition training (KAAT)

is not so large during training, i.e., it is a learning algorithm
that does not assume that the class of output results will change
due to disturbances. However, the disturbance ξ applied by
KAAT this time is an extremely large signal that removes
all the background of the original image x, so y′ is often
essentially very different from y when learning x′, making it
difficult to achieve the expected stabilization effect. Therefore,
a new loss, Laug, is added to the KAAT learning function
to perform supervised learning to obtain the same output for
x′ = x+ ξ, which includes large changes to the original input
x. Finally, the loss function of KAAT, LKAAT, is written as
follows, modifying equation (1):

LKAAT = LSTAB + αLaug (2)
= Lorg + λLstab + αLaug

= D(y, t) + λDKL(y, y
′) + αD(y′, t).

The newly introduced Laug can also be regarded as an
additional data augmentation of ROI extraction added to the
original image. The α is a hyperparameter.

C. Detection of ROI

For the extraction of the ROI (i.e., a leaf region) in this
study, we used AOP [17]. AOP is a highly accurate method
that achieves precision and recall rates of 98.6% and 97.5%,
respectively, for the segmentation of cucumber leaf regions.
However, we do not limit ourselves to this method as long as
foreground extraction is possible. Although AOP can gener-
ate segmentation images with automatic correction of image
brightness and color, in this experiment, in order to directly
evaluate the effect of the proposed KAAT, the segmentation
results were obtained by turning the generated image into a
binary mask and applying it to the original image. The same
8,000 cucumber leaf images as in [17] were used to train the
AOP network. These were included in the training images for
this experiment, and no test images were included.

III. EXPERIMENTS

A. Dataset

As noted above, many previous studies have pointed to
the effects of overlearning associated with the splitting of
potentially similar images into training and evaluation images.
In this experiment, we eliminated such effects by clearly
separating the training and evaluation image sets. The statistics
for the dataset used in the experiment are shown in Table I,
and examples of images of typical symptoms of each disease
are shown in Fig. 2. The experiment was conducted using a
total of 76,964 cucumber leaf images for training and 9,338
test images collected in different fields than the training set.
Each case is either infected with one of the following eight
diseases or a healthy leaf. The types of diseases include five
fungal diseases ((a) powdery mildew (PM), (b) downy mildew
(DM), (c) corynespora leaf spot (CLS), (d) gummy stem blight
(GSB), and (e) bacterial spot (BS)), as well as three viral
diseases ((f) cucumber mosaic virus (CMV), (g) cucumber
chlorosis (CCYV), and (h) melon yellow spot virus (MYSV)).

B. Classification model and evaluation

In this experiment, EfficientNet-B4 [32], a CNN model
with reported superior classification performance, was used
as the plant disease discriminator. For data augmentation,
we used RandAugment [33], which has been reported to be
equally effective. The resolution of the discriminator input
was set to 380×380, the optimization method was Adam,
the learning coefficient was 0.001, and the batch size was
32. The parameters of RandAugment were set to n = 4 and
m = 5, based on the results of preliminary experiments. In
this experiment, these conditions were used as a baseline to
compare the performance. The hyperparameters for stability
training and KAAT were set to λ = 1.0 and α = 0.85, based
on the results of preliminary experiments.

Four types of comparison of disease diagnosis performance
were conducted: the baseline, diagnosis on images of pre-



TABLE I
DATASET USED IN OUR STUDY

fungal diseases viral diseases (i) Healthy Total(a) PM (b) DM (c) CLS (d) GSB (e) BS (f) CMV (g) CCYV (h) MYSV
# train 6,390 6,803 6,675 1,475 1,071 22,042 4,721 10,670 17,117 76,964
# test 1,135 117 491 100 946 1,588 1,248 1,468 2,245 9,338

Fig. 2. Examples of infected and healthy cucumber leaves

extracted leaf areas by AOP [17] (+ AOP), baseline with
stability training [29] (+ stability training), and baseline with
the proposed KAAT (+ KAAT).

When constructing a practical diagnostic system, it is not
enough to evaluate the diagnostic performance for each disease
based on the percentage of correct answers (i.e., number of
correct answers/number of data = recall); it is also important
to evaluate the conflicting indicator precision (i.e., number
of correct answers/number of detected instances). Therefore,
in this study, we used the F1 score (i.e., 2 × (precision ×
recall)/(precision+recall)), which is the harmonic mean of
those conflicting indicators. On the other hand, micro accuracy,
which is widely used for performance evaluation in literature,
is also included for reference. It should be noted that the
number of training and test data varies widely by disease
category.

IV. RESULTS

Although we did not quantitatively evaluate the accuracy of
leaf area extraction by AOP for the test images, qualitative
evaluation confirmed that the extraction was reasonable and
natural.

Table II shows a comparison of diagnostic performance
based on F1 scores for each disease. Table III summarizes
how much of an advantage KATT had over the baseline.
The proposed KAAT improved the diagnostic performance
for six of the nine disease categories, although the degree of
improvement in identification for individual diseases varied
from small to large. The largest improvement (14.4%) was
seen in the F1 score for GSB, which originally had very
low diagnostic performance. Fig. 3 shows an example of
GSB images and the leaf areas extracted by AOP for them.
GSB is symptomatically similar to CLS and PM, with 21%
false positive identification each in the baseline, but with
the introduction of KAAT, the false positive identification
rate for PM was reduced to 5%. Conversely, BS showed a
5.6% decrease. As it turned out, KAAT improved the overall
diagnostic performance by 3.77% for macro-F1 and 2.01% for
(micro) accuracy. These results are better than those obtained
with AOP pre-processing in addition to the baseline.

On the other hand, in this experiment, the classifier that
applied naive stability training had lower diagnostic perfor-
mance than the baseline that did not. Various changes in the
hyperparameter of the stability training did not change this
trend.

The speed of the diagnosis was the same at 25.12 images/sec
for the baseline and the proposed KAAT, whereas it dropped to
1.13 images/sec when diagnostics were conducted after ROI
extraction by AOP was performed as preprocessing. This is
because the ROI extraction process takes much more time than
the diagnosis process.

V. DISCUSSION

We have confirmed that the proposed KAAT steadily im-
proves diagnostic performance under the practical conditions.
In addition, KAAT has the great advantage of not increasing
the execution time of the diagnostic run by virtue of a learning
method that directs the discriminator’s attention to the ROI.
The images used in this evaluation were collected in a realistic
situation and included images from completely different fields,
unlike the simple evaluation in which the evaluation data
are similar to the training data, which is often the case in
conventional plant disease research. Therefore, the absolute
values of diagnostic performance appear lower than those in



TABLE II
CLASSIFICATION PERFORMANCE FOR EACH DISEASE IN F1 METRIC (%)

fungal diseases viral diseases (i) Healthy macro F1 accuracy(a) PM (b) DM (c) CLS (d) GSB (e) BS (f) CMV (g) CCYV (h) MYSV
Baseline † 76.8 50.4 49.6 14.3 74.4 52.5 84.9 56.2 75.0 59.35 67.00
+ AOP [17] ‡ 81.6 48.3 49.0 36.1 64.2 51.8 83.3 62.2 77.8 61.57 68.16
+ stability training [29] 80.4 52.4 48.2 18.0 46.7 51.8 82.6 54.3 71.9 56.25 63.56
+ KAAT (proposed) 83.6 62.9 49.2 28.7 68.8 52.7 83.9 62.0 76.3 63.13 69.01

†: EfficientNet-B4 [32] + RandAugment [33] (n = 4,m = 5).
‡: Classification for images with prior ROI (leaf area) extraction by AOP.

TABLE III
PERFORMANCE IMPROVEMENT WITH KATT RELATIVE TO THE BASELINE

(%)

recall precision F1
(a) PM 4.5 10.4 6.8
(b) DM -0.9 26.8 12.4
(c) CLS -2.8 1.0 -0.4
(d) GSB 2.0 16.6 14.4
(e) BS -4.4 -7.3 -5.6
(f) CMV 4.9 -6.0 0.2
(g) CCYV -1.8 0.6 -1.0
(h) MYSV 5.6 6.0 5.8
(i) Healthy 2.3 0.8 1.3
Total 1.06 5.41 3.77

the literature to date. However, this experiment included tens
of thousands of training images, and only current cutting-
edge CNN model + data augmentation techniques are able
to achieve this level of diagnostic performance. The difficulty
of diagnosis differs for each disease, and the diagnostic perfor-
mance varies depending on the similarity of the composition
of the training image and the evaluation image.

Although stability training has been reported to be highly
effective, it did not produce the desired results in the exper-
iment with the large background-removing disturbance ξ in
this case. This is presumably because the estimated y′ for
the input containing extremely large disturbances x + ξ is
essentially very different from y, as mentioned above, and
it was difficult to reduce the difference between these two
by learning. Since KAAT performs supervised learning even
for images with extensive background removal thanks to the
newly introduced loss Laug , we believe that the stabilization
effect is enhanced even for such large disturbances.

Since DM and GSB have very few test images (117 and
100 images, respectively), the precision in question is greatly
reduced due to misidentification among categories. Therefore,
the precision that constitutes the F1 score is inevitably lower,
resulting in a lower F1 score. For these difficult categories,
KAAT also achieves performance comparable to that achieved
when AOP is introduced as preprocessing.

In this experiment, the improvement with respect to GSB
was significant. The typical symptom of PM, which was origi-
nally frequently misidentified, was white blotchiness, but there
were also many symptoms, such as wilting of leaves, that were
similar to those of GSB. The KAAT allows the discriminator to

Fig. 3. Example of GSB images and their leaf regions determined with AOP

focus on the leaf area, which may have facilitated improvement
in performance, as it allows the discriminator to focus on
differences that are essentially symptoms.

For BS, scores decreased by 5.6%, which was almost
entirely due to increased misidentification as healthy cases.
A closer look reveals that for BS, there was a significant de-
crease in performance (-10.3%) when AOP was applied to the
baseline. BS is typically characterized by small spots caused
by fungal growth, and it appears that AOP increased misiden-
tification to the healthy category by excluding symptomatic or
pronounced leaves as background. In contrast, KAAT does not
completely remove the background information, allowing it to
take the original information into account, which may have
resulted in better results than the baseline +AOP.

VI. CONCLUSION

In this paper, we proposed key area acquisition training
(KAAT) for the automatic diagnosis of plant diseases using
images, which enables the classifier model to focus on the
ROI including lesions. KAAT is a learning method in which
the diagnostic results are constrained to be the same before and
after the ROI is extracted. To achieve this, explicit constraints
are added to obtain correct results even after ROI extraction.
Using a total of approximately 86,000 images collected in
several actual fields, classification experiments of nine cat-
egories found in cucumber leaf images showed that KAAT
did not require ROI (i.e., leaf area) extraction at runtime
but nevertheless provided diagnostic performance equal to or
better than that of the extracted images.
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[11] J. Boulent, S. Foucher, J. Théau, and P.-L. St-Charles, “Convolutional
neural networks for the automatic identification of plant diseases,”
Frontiers in Plant Science, vol. 10, p. 941, 2019.

[12] Y. Toda and F. Okura, “How convolutional neural networks diagnose
plant disease,” Plant Phenomics, vol. 2019, p. 9237136, 2019.

[13] H.-J. Yu and C.-H. Son, “Leaf spot attention network for apple leaf
disease identification,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2020, pp. 229–
237.

[14] M. Zekiwos, A. Bruck et al., “Deep learning-based image processing
for cotton leaf disease and pest diagnosis,” Journal of Electrical and
Computer Engineering, vol. 2021, p. 9981437, 2021.

[15] M. A. Mithu, S. I. Momo, M. Hasan, K. M. Rahman, A. Sattar et al.,
“Pumpkin leaf disease detection: Convenience of cnn over traditional
machine learning in terms of image classification,” in Smart Systems:
Innovations in Computing. Springer, 2022, pp. 347–357.

[16] K. Suwa, Q. H. Cap, R. Kotani, H. Uga, S. Kagiwada, and H. Iyatomi,
“A comparable study: Intrinsic difficulties of practical plant diagnosis
from wide-angle images,” in Proceedings of the IEEE International
Conference on Big Data Workshops, 2019, pp. 5195–5201.

[17] T. Saikawa, Q. H. Cap, S. Kagiwada, H. Uga, and H. Iyatomi, “AOP: An
anti-overfitting pretreatment for practical image-based plant diagnosis,”
in Proceedings of the IEEE International Conference on Big Data
Workshops, 2019, pp. 5177–5182.

[18] Q. H. Cap, H. Uga, S. Kagiwada, and H. Iyatomi, “LeafGAN: An ef-
fective data augmentation method for practical plant disease diagnosis,”
IEEE Transactions on Automation Science and Engineering, 2020.

[19] S. Kanno, S. Nagasawa, Q. H. Cap, S. Shibuya, H. Uga, S. Kagiwada,
and H. Iyatomi, “PPIG: Productive and pathogenic image generation for
plant disease diagnosis,” in Proceedings of the IEEE-EMBS Conference
on Biomedical Engineering and Sciences, March 2021, pp. 554–559.

[20] S. Shibuya, Q. H. Cap, S. Nagasawa, S. Kagiwada, H. Uga, and H. Iy-
atomi, “Validation of prerequisites for correct performance evaluation
of image-based plant disease diagnosis using reliable 221K images
collected from actual fields,” in Proceedings of the AAAI Conference
on Artificial Intelligence Workshops, 2021.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–
1149, June 2016.

[22] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Proceedings of the
European Conference on Computer Vision, 2016, pp. 21–37.

[23] X. Zhu, S. Lyu, X. Wang, and Q. Zhao, “TPH-YOLOv5: Improved
YOLOv5 based on transformer prediction head for object detection on
drone-captured scenarios,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2021, pp. 2778–2788.

[24] J. Liu and X. Wang, “Early recognition of tomato gray leaf spot disease
based on MobileNetv2-YOLOv3 model,” Plant Methods, vol. 16, pp.
1–16, 2020.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair et al., “Generative adversarial nets,” in Proceedings of the
Advances in Neural Information Processing Systems, 2014, pp. 2672–
2680.

[26] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
1125–1134.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Proceedings
of the Advances in Neural Information Processing Systems, vol. 30, pp.
6000–6010, 2017.

[28] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in Proceedings of the
International Conference on Learning Representations, 2021, pp. 1–21.

[29] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the
robustness of deep neural networks via stability training,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 4480–4488.

[30] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proceedings of the International Conference
on Learning Representations, 2015, pp. 1–11.

[31] T. Miyato, S. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial
training: A regularization method for supervised and semi-supervised
learning,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 41, no. 8, pp. 1979–1993, 2018.

[32] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in Proceedings of the International
Conference on Machine Learning, May 2019, pp. 6105–6114.

[33] E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le, “RandAugment: Practical
automated data augmentation with a reduced search space,” in Proceed-
ings of the Advances in Neural Information Processing Systems, 2020,
pp. 18 613–18 624.


