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Abstract—To make content-based image retrieval (CBIR)
technology for magnetic resonance (MR) images of the brain
practical and useful for diagnosis and research, it is important to
obtain low-dimensional representations that embody pathological
attributes. However, recent evidence suggests that variations in
domains resulting from differences in imaging equipment and
protocols at each imaging facility can overshadow pathological
attributes. In this study, we propose a novel approach known
as multidecoder adversarial domain adaptation (MD-ADA) to
obtain low-dimensional representations of brain MR images that
preserve pathological features while mitigating domain differ-
ences. This method combines adversarial domain adaptation
techniques with convolutional autoencoders that have distinct de-
coders for each domain and employs adversarial learning to pre-
vent domain discrimination from the produced low-dimensional
representations. Experimental evaluations on two datasets, ADNI
and PPMI, comprising 4,168 brain images demonstrate that
the proposed MD-ADA significantly reduces domain differences
between datasets without compromising the recoverability of
brain images or the accuracy of disease classification.

Index Terms—ADNI, PPMI, CBIR, domain harmonization,
dimensional reduction, 3D brain MRI

I. INTRODUCTION

Magnetic resonance (MR) images and their associated clin-
ical information are stored in picture archiving and com-
munication systems (PACS) [1] to facilitate the centralized
management of scan images. These images are then searched
for diagnostic or research purposes, and querying or registering
images in these databases commonly involves using keywords
that represent the structural and clinical features of the brain.
However, selecting appropriate keywords requires knowledge
and experience, making it costly. Thus, content-based image
retrieval (CBIR) that can search for images themselves is
advantageous in medical settings [2].

From a machine learning perspective, brain MR images
are high-dimensional data with a large number of voxels,
and contain a lot of information, other than disease and

*Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database(adni.loni.usc.edu). As such,
the investigators within the ADNI contributed to the design and implemen-
tation of ADNI and/or provided data but did not participate in analysis
or writing of this report. A complete listing of ADNI investigators can
be found at https://adni.loni.usc.edu/wpcontent/uploads/how to apply/ADNI
Acknowledgement List.pdf

biological aspects, that is noise to CBIR. Therefore, appro-
priate dimensionality reduction reflecting disease features is
essential. Arai et al. [3] successfully obtained low-dimensional
representations of high-resolution brain MR images, which are
essential for achieving CBIR, using 3D convolutional autoen-
coders (3D-CAE). However, it has been confirmed that domain
differences exist due to differences in scanners and protocols
at each imaging site, which affect feature extraction based
on biological features [4], [5]. Non-biological variations—
such as magnetic field strength, scanner manufacturer, and
reconstruction protocol at each facility—have different effects
on the images and have a significant impact on subsequent
processes such as classification and clustering [4]–[7]

To make CBIR based on a diverse range of brain MR images
accumulated through a multicenter and long-term study, an
extractor capable of robust feature extraction that can handle
domain differences is required. In addition to statistical and
image processing-based methods [6], [8]–[11] that have been
proposed to address this problem, methods based on deep
learning [4], [12]–[14] have recently been introduced.

Classical harmonization methods have been successful in
harmonizing images by correcting the brightness distribution
and histogram equalization in sub-regions of an image [8], but
these methods can only approximate the statistics that can be
computed from the images; these are not suitable for images
with pathological features that affect the intensity profiles [4].
Methods based on ComBat [9], an empirical Bayesian method
developed to eliminate batch effects in genetics, have been
reported to successfully remove non-biological variation while
preserving biological features [6], [10], [11]. ComBat models
image features by incorporating both biological variables
and scanner effects using multivariate linear mixed effects
regression. Furthermore, these models have shown superior
performance even with small sample sizes due to the use of
empirical Bayesian methods to learn the model parameters.
However, these models have limitations, such as (i) insufficient
performance in complex mappings across multiple regions,
(ii) assumptions of specific prior probabilities (Gaussian or
inverse gamma) may not be appropriate, and (iii) susceptibility
to outliers [15].

https://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Deep learning-based methods for harmonizing brain MR
images can be broadly classified into two approaches based on:
1) image generation [4], [12], [13] and 2) adversarial domain
adaptation techniques [14].

The former is a domain harmonization method that uses
generative models such as U-net [16] and generative ad-
versarial networks (GANs) [17] to perform style transfer of
images from any domain to a specific domain, thereby gen-
erating high-quality transformed images with excellent results
reported. On the other hand, due to the constraint that the
size and shape of the target structure (i.e., the brain in the
image) cannot be significantly changed, it is not suitable for
cases in which the size and shape of the brain differ between
domains. In addition, because training the model is difficult
and requires a large amount of data, many models are limited
to implementation on 2D slices. Therefore, the possibility of
missing context between adjacent slices cannot be eliminated.

The latter method is a means to get feature representations
that is invariant to the domain of the data and can appropriately
perform a given main task using adversarial domain adaptation
techniques formalized by Ganin et al. [18]. Dinsdale et al.
[14] applied this technique to the domain harmonization of
MR images and demonstrated robust discrimination against
the influence of domain differences in deep learning models
that perform age prediction and segmentation. However, this
method is limited to obtaining feature representations that
retain partial information regarding the brain for a specific
task such as classification, and is not designed to obtain
low-dimensional feature representations that retain information
regarding the entire brain image. Therefore, these methods are
not suitable for CBIR, which requires appropriate dimension-
ality reduction that preserves information regarding the entire
brain.

In this paper, we propose a new effective method, multide-
coder adversarial domain adaptation (MD-ADA), to address
the domain shift problem caused by differences in scanning
equipment, protocols, and other environmental factors in imag-
ing centers, which hinders feature extraction based on essential
biological features necessary for CBIR implementation. MD-
ADA is based on the method proposed by Dinsdale et al. [14]
and applies adversarial domain adaptation to a 3D-CAE. The
new key feature of MD-ADA is a domain-specific decoder
that improves domain harmonization and stabilizes training to
achieve the desired low-dimensional representation.

II. RELATED WORK

Furthering Arai et al.’s work on dimensionality reduction
of brain MR images [3], Onga et al. [5] introduced distance
learning and improved the feature representation to be more
coherent for different pathological conditions. Nishimaki et
al [19] further improved the interpretability of features and
localized brain regions using variational autoencoders [20].
However, these studies did not take into account differences in
imaging sites, thus leaving room for improvement for practical
CBIR with multicenter data.

One domain harmonization method based on image gen-
eration is the use of generative models such as GANs [17]
and CycleGANs [21], as proposed in previous studies [4],
[12], [13]. Liu et al [13] used GAN for style transformation
and successfully generated superior harmonic MR images by
mapping MR images collected from different sites into the
same latent space and then inverse transforming them. In
addition, Arai et al. [4] applied CycleGAN to convert 3D brain
MR images acquired from different MRI scanners to pseudo-
standard scanner images, followed by dimensionality reduction
using 3D-CAE. The acquired low-dimensional representation
revealed reduced domain bias and improved disease classifi-
cation accuracy.

On the other hand, a recent technique called adversarial
domain adaptation aims to optimize the training model for both
the main task, such as classification, and domain classification;
this causes domain identification to become impossible while
maintaining accuracy in the main task. Ganin et al. [18]
revealed that this behavior can be achieved by simply adding
a domain classifier consisting of standard convolutional layers
and gradient reversal layers to a feedforward neural network.
Another adversarial domain adaptation method was proposed
by Tzeng et al. [22]. This method alternates between training
the optimal domain classifier for a given feature representation
and minimizing a confusion loss to optimize the feature
extractor to bring the softmax output of the domain classifier
closer to a uniform distribution, thereby successfully confusing
the domain classifier to the maximum extent. Dinsdale et
al. [14] achieved domain harmonization of MR images for
a specific task using this adversarial domain adaptation. They
also demonstrated that this method is more suitable for domain
harmonization tasks than other adversarial domain adaptation
methods, as it more effectively acquires feature representations
with evenly distributed information across domains. However,
as mentioned above, their method cannot acquire a low-
dimensional representation that preserves the input informa-
tion. When their method was modified for CBIR realization
so that all the input information was converted to a low-
dimensional representation (e.g., by eliminating the U-Net
bypass), there was still room for improvement in harmonic
performance when the domain differences were large.

III. MULTIDECODER ADVERSARIAL DOMAIN
ADAPTATION(MD-ADA)

In the CBIR system considered in this paper, the input 3D
brain MR image is dimensionally compressed by a feature ex-
tractor, and the similarity calculation is performed in the low-
dimensional feature space, where the images in the database
have been pre-compressed by a same method. This paper
proposes a new feature extractor, multidecoder adversarial
domain adaptation (MD-ADA), which solves the key challenge
of harmonizing domain differences when implementing CBIR.
The key feature of our proposal is that it has a decoder for
each harmonized domain, as described in detail below.
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Fig. 1. Architecture of MD-ADA (two domain; f: filter size, s: stride size, p: padding size, c: output channel size).

A. Network architecture of MD-ADA

Figure 1 shows an example of a model that harmonizes two
domains A and B using MD-ADA. MD-ADA is a machine
learning model that builds on the low-dimensional compres-
sion of brain images, demonstrated in previous studies [3]
[4], by incorporating insights from current machine learning
techniques to improve the 3D-CAE encoder-decoder architec-
ture. The MD-ADA model has a τ -shaped structure, similar
to the approach of Dinsdale et al. [14], and includes a domain
predictor gD to perform adversarial domain adaptation. The
Conv Block comprises convolution, batch normalization, and
rectified linear unit (ReLU) activation. The Residual Block
has a configuration published in the literature [34], combin-
ing multiple convolutions with skip connections to stabilize
training as the number of layers increases. In addition, the
Residual Block of the decoder performs dimension expansion
using upsampling prior to application.

The encoder fE transforms the input x of domain k
(x ∈ Xk) into a low-dimensional representation z for use
in CBIR, while the decoder fD aims to reconstruct an image
x′ ∈ X ′

k that is identical to the input image. The domain
predictor gD is a training model that predicts the domain k
to which x belongs based on z through supervised training.
MD-ADA aim to obtain a low-dimensional representation z
of the input image x that can be correctly reconstructed by
the decoder, and to eliminate information that contributes to
domain prediction from z. And this elimination of domain-
relevant information is achieved by training the encoder to
produce the classification results d are uniform across all
domains, even with a highly trained domain predictor gD.

MD-ADA proposes an improvement to prevent the loss of
harmonization capacity due to conflicting training, discussed
below, by employing a decoder for each target domain. In
the implementation, the decoder for each domain can be

easily implemented by only differencing the final Conv Block.
Therefore, the increase in the number of parameters is rather
limited.

B. Training procedure

The training process of MD-ADA consists of three stages:
(i) Training the encoder fE and decoder fD to acquire

the low-dimensional representation z that minimizes the
reconstruction error with the input image.

(ii) Training only the domain predictor gD to enable domain
classification from the feature representation z.

(iii) Fixing the domain predictor gD and training only the
encoder fE to make the domain classification impossible
from the feature representation z.

For each stage, we optimize a different loss function,
thereby leading to three consecutive steps ((i)–(iii)) in each
training batch. The elimination of domain information is
achieved through a combination of training in stages (ii)
and (iii). In stage (ii), domain predictor gD is optimized
to perform domain classification from the low-dimensional
representation z obtained in stage (i). In stage (iii), only
encoder fE is optimized, while keeping gD fixed, to prevent
it from accurately classifying the domain. As long as domain
information remains in the feature representation z, gD can be
optimized to enable domain classification, so this adversarial
two-stage training can be repeated to eventually omit almost
all domain information from z, but leaving reconstructable
information (brain information).

To train (i), the mean squared error, commonly used in
CAE training, was calculated for each domain, and the macro
average was used as the reconstruction error. For the training
of (ii), cross-entropy—a loss function commonly used in
class classification—was used. For the training of (iii), the
confusion loss [22] shown in equation (1) was used, where
n is the number of images in the mini-batch, K is the total



number of domains considered and k is K’s index, and px,k
is the softmax output of the domain classifier for domain k.
This loss becomes smaller when px,k is evenly distributed
across domains and larger when the output is biased toward a
particular domain.

Lconf = − 1

n

n∑
x=1

K∑
k=1

1

K
log(px,k). (1)

If sufficient harmonization is achieved between different do-
mains and there is no domain information in the representation
z, it becomes difficult to reconstruct an original image that
contains domain features when there is only one decoder, as
in previous studies. In the proposed MD-ADA, by preparing a
decoder for each domain, it is possible to reconstruct an input
image that preserves domain information from a representation
z that has lost domain information, thereby avoiding the
training conflict between stages (i) and (iii).

IV. EXPERIMENTS

A. Datasets and Preprocessing

Table I shows the details of the two datasets of T1-weighted
brain MR images used in this experiment. The Alzheimer’s
Disease Neuroimaging Initiative 2 (ADNI2)1 consists of four
disease categories of increasing severity in the following order:
cognitively normal (CN), mild cognitive impairment (MCI),
late mild cognitive impairment (LMCI), and Alzheimer’s
disease (AD). The Parkinson’s Progression Markers Initiative
(PPMI)2 consists of Parkinson’s disease cases and healthy in-
dividuals. The CN category of ADNI2 and the control category
of PPMI are medically equivalent, and since there are no
anatomical features associated with Parkinson’s disease on T1-
weighted MRI, all data from PPMI were considered medically
healthy (CN) and used to evaluate domain harmonization.

Further, all images were skull-stripped and linearly aligned
to the JHU-MNI space [23] using MRICloud [24] provided by
the collaborative research institution, Johns Hopkins Univer-
sity. The size of the images after processing by MRICloud
was 181×217×181 pixels, but they were downsampled to
80×96×80 pixels for efficient training. MR images often have
different intensity distributions and contrasts depending on the
protocol or operator used during the scan; thus, the intensity
normalization was performed. Specifically, the standard de-
viation σ of the intensity was calculated for each case, and
negative values and values greater than 4σ were replaced by
0 and 4σ, respectively. Thereafter, a linear transformation was
performed to normalize the values to have a maximum of 1
and a minimum of 0.

B. Evaluation

To confirm the effectiveness of the feature representation z
generated by MD-ADA for CBIR, we conducted the following
four evaluations. In all experiments, the dimension of the
feature representation z was set to 150. Their details and
settings are described in the following subsection.

1 https://adni.loni.usc.edu 2 https://www.ppmi-info.org

TABLE I
NUMBER OF CASES PER DATASET

Dataset Case label Number Number of Patients

ADNI2 CN 1,121 227
AD 674 192

LMCI 926 143
MCI 995 240

PPMI Control 114 75
PD 338 149

(1) Preservation of original information (Reconstruction)
(2) Domain information residuality (Domain F1)
(3) Preservation of disease information (Diag F1)
(4) Relevance of distance in feature space (DCN−Ctrl)

To evaluate the effectiveness of the proposed MD-ADA, we
conducted comparative evaluations using the following models
for the four evaluation items described above:
(A) A simple dimension compression by 3D-CAE (baseline)
(B) Applying ComBat [9] to the feature representation ob-

tained in (A) (+ ComBat)
(C) Adding Gaussian noise with mean 0 and standard devia-

tions of 0.1, 0.03, and 0.01 to the feature representation
obtained in (A) (+ Noise)

(D) Combining adversarial domain adaptation with (A) (+
ADA)

(E) The proposed method (+ MD-ADA)
Furthermore, we conducted five-fold cross-validation that

considered patient labels to ensure that the same patients were
not present in the training and evaluation data.

1) Preservation of original information (Reconstruction):
To evaluate how well the acquired feature representation z
retains original brain information, we calculated the root mean
square error (RMSE) between the original image x and the
reconstructed image x′ obtained from the decoder. We also
performed visual evaluation of the reconstructed brain images.

2) Domain information residuality (Domain F1): To eval-
uate the domain information residuals of the low-dimensional
representation z, we investigated the domain classification
performance of z using L2-regularized logistic regression
(Logistic-L2). In addition, for ADA and MD-ADA, we also
evaluated the domain classification performance obtained from
the domain predictor gD of the final epoch. We used the
F1 score as the evaluation metric. To ensure an accurate
evaluation, we randomly selected one case from each patient
for evaluation (the same applies to the following). Ideally,
if appropriate domain harmonization is achieved, this value
should be close to 1 divided by the number of domains (i.e.,
0.5 in this experimental setting).

3) Preservation of disease information (Diag F1): To eval-
uate the preservation of disease information in z, we con-
structed an Alzheimer’s disease diagnostic model using logis-
tic regression with L2 regularization based on z as described
above, and then evaluated the diagnostic performance using the
F1 score. To demonstrate that the acquired low-dimensional
representation retains biologically meaningful information, it

https://adni.loni.usc.edu
https://www.ppmi-info.org


TABLE II
COMPARISON OF THE EFFECTIVENESS OF THE FEATURE REPRESENTATION FROM EACH METHOD FOR CBIR.

(1) Reconstruction (2) Domain F1 ↓ (3) Diag F1 ↑ (4) DCN−Ctrl ↓
(RMSE) ↓ Logistic-L2 gD

A) 3D-CAE (baseline) 0.0853 0.942 0.954 0.762 1.030
B) + Combat [9] - 0.524 - 0.730 0.971
C) + Noise (SD: 0.01) - 0.953 - 0.753 1.031

+ Noise (SD: 0.03) - 0.918 - 0.737 1.009
+ Noise (SD: 0.1) - 0.820 - 0.637 1.010

D) + ADA 0.0868 0.795 0.584 0.753 0.861
E) + MD-ADA 0.0861 0.702 0.558 0.775 0.847

is desirable for this value to be high. We excluded MCI and
LMCI, which are cognitive impairment conditions, from the
training and evaluation and treated PD and control of the PPMI
dataset as CN, as mentioned earlier.

4) Relevance of distance in feature space (DCN−Ctrl):
To quantitatively evaluate the effect of the proposed harmo-
nization, after each harmonization process, we evaluated the
extent to which data groups in the same medical category
were separated from each other in the low-dimensional feature
space due to domain differences. Specifically, we evaluated the
Mahalanobis distance DCN−Ctrl between the data of ADNI2-
CN and the data of PPMI, which are considered medically
similar. Furthermore, we normalized the Mahalanobis distance
between AD and CN in the ADNI2 dataset to 1. DCN−Ctrl

is expected to be smaller due to domain harmonization.

V. RESULTS

Table II summarizes the evaluation results. The best results
in each category are indicated in bold. An example of a
brain image and its reconstructions from low-dimensional
representations are shown in Fig. 2. Combat(B) [9] and the
method of adding noise to the low-dimensional representation
(C) are methods that modify the feature representation itself.
Therefore, reconstructed images are not available, and the
quality of the image reconstruction is not evaluated.

The proposed MD-ADA (E) significantly reduced the do-
main information residuality (Domain F1), while slightly
improving the disease classification accuracy (Diag F1) com-
pared to other methods. It was also observed that the difference
in the low-dimensional representation due to different datasets
of the same disease (DCN−Ctrl) was reduced. Furthermore,
as also indicated in Fig. 2, no disadvantage of having multiple
decoders was observed for the proposed method in image
reconstruction from the low-dimensional representation, z.

ComBat(B) successfully reduced domain classification ac-
curacy (Logistic-L2) to an ideal value close to 50%, but it also
reduced disease diagnosis ability (Diag F1) and eliminated
important biological features for CBIR. The noise injection
method (C), aimed at reducing domain classification ability,
indicated some effect on domain harmonization, but at the
significant expense of disease diagnostic ability. It also did
not affect the data distribution in the feature representation
and, thus, did not reduce the distance between datasets for the
same group of cases (DCN−Ctrl).

VI. DISCUSSION

In CBIR, obtaining a low-dimensional representation for
input brain images is essential; this is achieved solely by the
encoder. In the conventional ADA(D) with only one decoder,
if domain information is omitted from the low-dimensional
representation z obtained by the encoder, image reconstruction
becomes difficult. This model learns to reduce the reconstruc-
tion error of the CAE that comprises an encoder–decoder;
consequently, it becomes difficult to sufficiently reduce domain
information from z. In the proposed MD-ADA(E), appropriate
reconstructed images can be obtained even after sufficient
elimination of domain information from the low-dimensional
representation z of input images by incorporating decoders
for each domain. This leads to further elimination of domain
information from z, as confirmed by the results. Therefore,
domain-specific decoders significantly contribute to achiev-
ing a superior encoder for obtaining the low-dimensional
representation z of input images, even in cases where the
image features are significantly different between domains. In
addition, the domain-specific decoders are implemented with
minimal increase in parameter count, mainly differing in a
simple block with only one additional convolutional layer.
Therefore, it is desirable for preventing overfitting.

VII. CONCLUSION

In this paper, we proposed MD-ADA—a training model
that can both harmonize domain differences and compress
dimensionality while capturing the biological features of the
brain—to make CBIR for brain MR images. MD-ADA is a τ -
shaped structure model that combines a 3D-CAE architecture
with adversarial domain adaptation and has a decoder for each
domain to be harmonized. We demonstrated that MD-ADA
can preserve biological information, such as brain structure
and disease characteristics, while achieving excellent domain
harmonization. In the future, we aim to establish a superior do-
main harmonization technique by validating the effectiveness
of MD-ADA using larger and more diverse datasets.
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