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Abstract—Although image-based melanoma diagnosis has
achieved a sufficient level of numerical accuracy, providing
objective evidence is essential to enhance the explainability and
reliability of this approach. The collection of label information
based on quantitative clinical indicators is very expensive, mean-
ing that the amount of labeled data available is limited. In this
paper, we propose an effective method for predicting explainable
melanoma indicators defined by a 7-point checklist in a situation
where only a limited number of labeled data are available.
Our proposal effectively utilizes virtual adversarial training as
a semi-supervised learning framework with multi-task learning.
This approach gives favorable performance for only a very
limited number of expensive labeled data. The proposed method
improves the final accuracy of melanoma diagnosis calculated
based on these predicted indices by 7.5% (making it equivalent
to expert dermatologists), based on 9,124 unlabeled images with
diagnosis information added to the 226 base labeled training
images.

Index Terms—melanoma, computer-aided diagnosis (CAD),
deep learning, multi-task learning, 7-point checklist

I. INTRODUCTION

Advanced malignant melanoma is the most aggressive form
of skin cancer. According to U.S. statistics, about 96,480
people are newly diagnosed as melanoma patients, and 7,230
people are currently expected to die from melanoma !. Correct
diagnosis, especially in the early stages, is therefore essential
for the reduction of melanoma-related deaths. However, diag-
nosis of melanoma is often difficult and subjective. According
to [1], the accuracy of expert dermatologists in diagnosing
melanoma is still estimated to be about 80% with the use of
a specially designed magnifying scope called a dermoscope.
To overcome these problems, automated analysis procedures
for pigmented skin lesions including melanomas have been
proposed since the beginning of this century [2-7]. The first
three are pre-date deep learning era, and usually require
appropriate tumor area segmentation [8], [9], color calibration
[10] etc. as preprocessing steps, the remainder are based on
deep learning techniques, and can omit these preprocessing
stages. Although both traditional and deep learning methods
have achieved high levels of identification accuracy that are
comparable to those of specialists, these systems only provide
diagnosis results without specific evidence.

lKey statistics for melanoma skin cancer, American Cancer Society, ac-
cessed Sep.18, 2019. https://www.cancer.org/cancer/melanoma-skin-cancer/
about/key-statistics.html
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Hence, there is still room for improvement in terms of
reliability, due to their blackbox characteristics. There have
been a limited number of studies providing evidence for
diagnosis based on the extraction of typical structures [11-
14], heat-map representation [15], [16] and quantification of
the score defined in the diagnostic guidelines [17]. However,
the expressions obtained by the methods in these first two
categories are subjective. Providing quantitative diagnosis ev-
idence in accordance with diagnostic guidelines such as a 7-
point checklist [18] reduces the problem known as blackboxing
in Al-based diagnosis, and greatly improves the reliability
of the system. In addition, the collection of labeled training
data for this task is very expensive, since dermatologists
need to determine each indicator. To make matters worse,
the definition of these indicators is also subjective, meaning
that variations in the training labels assigned to the items
cannot be ignored [17]. It is therefore necessary to ask several
experienced dermatologists to do this work, which is both
expensive and difficult.

In the field of machine learning, on the other hand, a great
deal with research has been done to improve the generalization
based on a small amount of training data. Researchers started
with constraints from the classic regularizers such as the
L1- and Ls- norms. Furthermore, new and efficient forms of
regularization and data augmentation techniques are now being
routinely used. Semi-supervised learning is the one of more
effective ways to improve the generality of a system. It uses
a large amount of unlabeled data for training, in addition to a
small amount of labeled data. A systematic review is found in
[19]. The methodologies of semi-supervised learning can be
categorized into self-training (iterative learning), graph-based
models, and vector-based techniques. Following the spread of
deep learning techniques, the vector-based techniques have
become particularly advanced [20-24]. Most recent vector-
based methods use deep networks to obtain a efficient low-
dimensional representation of a given task. Metric learning is
a technique based on the idea that data with similar properties
in a certain context (i.e. data that belong to the same or a
similar class in real space) should be close in low-dimensional
space [20], [21]. It should be noted that metric learning can
be applied to unsupervised or semi-supervised training. In
addition, unsupervised or semi-supervised learning techniques
based on generative models have also been proposed. Chen
et al. [22] improved the robustness of their classifier by



generating pseudo-data that were similar to specific data in the
metric space, but which were easily misclassified into different
classes. This can be considered an effective combination
of metric learning and generative modelling. Although this
technique performed well, a large amount of labeled training
data was required to obtain an accurate probability distribution
for the input data space. For skin lesion classification, Kitada
et al. [23] used a semi-supervised learning framework to
tackle the problem of imbalanced data by learning features
from unlabeled lesion images, and observed an increase in
discrimination performance.

Virtual adversarial training (VAT) [24] introduces well-
designed constraints to build smooth discrimination bound-
aries, based on the hypothesis that a robust classification model
should have a smooth boundary and that it can be applied to
semi-supervised learning. VAT has achieved excellent results
in multiple tasks for a very small number of available labeled
datasets. We expect these features of VAT to be very effective
for our problem.

As mentioned above, the availability of labeled training data
for the diagnostic indicators that we aim to predict is very
limited. However, training data with diagnostic labels (e.g.
melanoma or nevus tumors) has recently become widely avail-
able, following a competition related to automated melanoma
diagnosis technology 2. Multi-task learning [25] is a strategy
that solves multiple tasks that are related to each other, and
can improve the prediction performance by learning common
feature representations. Since a diagnosis is made by summing
up the score of diagnostic indicators in clinical practice, the
simultaneous training of diagnostic indicators and the use of
a large amount of diagnosis information for the related task
in a multi-task learning framework is expected to improve the
performance.

In this study, we propose an effective method for predict-
ing explainable melanoma indicators, as defined by the 7-
point checklist, using a combination of VAT (semi-supervised
learning) and multi-task learning. Our method aims to achieve
excellent predictive performance by using a very limited
amount of data with original labels, as well as a large amount
of data with “different” labels. The purpose of this study is not
to pursue the level of accuracy of automatic diagnosis often
seen elsewhere, but to achieve a quantitative presentation of
the basis for diagnosis, in order to improve the explainability
and reliability of the results of blackbox systems.

II. PREPARATION
A. 7-point checklist

First, we introduce a 7-point checklist [18], that is a
well-known diagnostic method for melanoma. This checklist
requires the identification of seven dermoscopic structures, as
shown in Table I. The score for a skin lesion is determined
as the weighted sum of the structures present in it. Using this

checklist, the total score (TS) is calculated as
TS = (#.major X 2) + (#.minor), (1)

2ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection https://
challenge2018.isic-archive.com/
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TABLE I: Dermoscopic structures and associated scores de-
fined in the 7-point checklist

Major criteria Score
S1. Atypical pigment network X 2
S2. Blue-whitish veil X 2
S3. Atypical vascular pattern X 2
Minor criteria Score
S4. Trregular streaks X 1
S5. Irregular pigmentation x 1
S6. Irregular dots / globules X 1
S7. Regression structures X 1

where #. major and #. minor are the number of major and mi-
nor dermoscopic structures, present in the image, respectively,
and the TS is therefore in the range zero to 10. If TS >= 3,
then the lesion is considered to be malignant. According to
[1], the average sensitivity and specificity shown by 40 expert
dermatologists based on this criterion were 75.0% and 76.2%,
respectively.

B. Datasets and definition of gold standard

We used two datasets in this study. Dataset A is an indicator-
labeled dataset consisting of 226 dermoscopy images with gold
standard scores, as defined in the 7-point checklist, and diag-
nosis information labeling them as melanoma or nevus. These
images are selected from [3], and contain 104 melanomas and
122 nevi. Dataset B is a diagnosis-labeled dataset contain-
ing 9,124 different dermoscopy images, consisting of 1,237
melanomas and 7,887 nevi drawn from the ISIC2018 dataset
[26], and external data also taken from [3]. This diagnosis-
labeled dataset does not contain scores from the 7-point
checklist. Confirmed diagnostic information is available for
all cases in both datasets (benign pigmented skin lesions
or malignant melanoma), and we leverage this diagnosis
information effectively. Note that obtaining the final diagnosis
information is much easier than obtaining these indicators. As
mentioned earlier, the recognition of dermoscopic structures
is highly subjective, even for expert dermatologists, and as a
result no gold standard has been established. In this study,
the dermoscopic structures defined by the 7-point checklist
were determined by four experienced dermatologists, and the
average was used, so that the range for each indicator was
[0,1]. Accordingly, each of the labeled training dermoscopy
images had an eight-dimensional binary vector (corresponding
to each item in the 7-point checklist and a diagnosis).

C. Virtual adversarial training

VAT is an effective training method based on the hypothesis
that a robust classification model should have a smooth bound-
ary. Local distribution smoothness (LDS) was introduced into
VAT as a specially designed regularization metric, and is a
negative measure of the local smoothness of the conditional
label distribution around the input against local perturbation.
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Fig. 1: Overview of proposed model: prediction of clinical indicators using semi-supervised and multi-task learning

The definition of LDS for a labeled or unlabeled input z is as
follows:

LDS(z,0) := D[p(y|z, 8), p(y|z + Tvadv, 0)] 2)

Tvadv = arg maXD[p(y‘xa 9),p(y|x + 9)]7 3)

rillr|l2<e

where y is the predicted label, € are the current model
parameters, 7,4y is the virtual adversarial perturbation that
makes the largest impact for the output around the input z,
p(+) is the posterior probability, i.e. the output probability
distribution of the model, and D|p, p’] is a non-negative func-
tion that measures the differences between two probabilistic
distributions p and p’, such as KL-divergence or cross-entropy,
respectively. Unlike adversarial training [27], unlabeled data
can also be used, since VAT uses LDS to measure the effects
of perturbation around the input based on the current model
6. Hence, VAT is capable of semi-supervised training. In this
effective algorithm, calculation of r.,q, involves only two
forwards and one back-propagation steps. The objective loss
function of the entire VAT is defined as a linear combination of
the conventional classification loss, the above LDS (in eq.(2))
and the additional conditional entropy of the current model
output p(y|x, d). The reader is referred to the original article
[24] for details.

III. PREDICTION OF EXPLAINABLE MELANOMA
INDICATORS

A. Prediction model

Our objective in this study is to accurately predict explain-
able melanoma indicators as defined by a 7-point checklist,
based on a limited set of labeled data. In order to achieve
this, our proposed model uses VAT and multi-task learning.
Fig. 1 shows an overview of our proposed model.

VAT is expected to generate a robust predictor by utilizing
a large amount of unlabeled data. Here, we focus on the fact
that information on diagnostic results (melanoma or nevus
tumor) can be used even with unlabeled data. We leverage
this different type of label information effectively using multi-
task learning. Although the amount of labelled data (226) is
much smaller than that of the unlabeled data (9,124), diagnosis
information is available for both datasets. In this context, a
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combination of VAT and multi-task learning is expected to
give a synergistic effect.

Our proposed model is basically consists of ResNet-101
convolutional neural networks pre-trained with the ImageNet
dataset [28]. Using multi-task learning, our network simultane-
ously predicts the score for seven indicators and the possibility
of melanoma (i.e. a total eight dimensions in the output) to
make up for the lack of an available labeled dataset. We assign
a sigmoid activation function at the output layer to ensure that
the network yields the associated output.

B. Training and experiments

We evaluated our model using 10-fold cross-validation, and
compared the prediction performance of each indicator in
the 7-point checklist. The final diagnostic performance was
compared under the following training conditions:

(1) Labeled data alone (baseline)
(2) Baseline + VAT
(3) Baseline + VAT + multi-task learning (MTL)

In scenario (1), we trained the network only with the
indicator-labeled dataset A. The size of the training dataset was
90% of that of the labeled dataset in each fold. Note that the
number of output dimensions of the network is seven, the same
as the number of indicators defined the 7-point checklist. In
senario (2), we first train the network in the same way as in (1)
and then train it with both the labeled data and the unlabeled
dataset (9,124 data points) using the VAT framework. In (3),
the training schema is the same as in (2), but we also use
malignancy information and train the network with the multi-
task learning. Thus, the number of outputs is eight. Here,
the larger the score for each feature defined in the 7-point
checklist (i.e. larger the total score, TS, in eq.(1)) the higher
the degree of malignancy. Thus, for efficiency, the calculation
of the adversarial direction 7,4, of VAT at each learning step
is determined based on the average of all seven (or eight)
items.

We also calculated diagnostic results based on the predicted
7-point checklist. (i.e. calculate the total score, TS, from eq.(1)
and check if TS >= 3). In addition, we built two classifiers
using the same ResNet-101 networks that determined only
whether the input image was a melanoma or nevus, for ref-



TABLE II: Prediction error for the 7-point checklist

D MAE SD
Baseline +VAT +VAT +MTL  Dermatologists

S1 0.342 0.324 0.329 0.250

S2 0.200 0.141 0.154 0.209

S3 0.106 0.090 0.071 0.072

S4 0.244 0.327 0.369 0.154

S5 0.265 0.174 0.191 0.297

S6 0.314 0.299 0.322 0.250

S7 0.255 0.206 0.213 0.148
Avg. 0.242 0.222 0.236 0.197

TABLE III: Diagnosis performance based on predicted indi-
cators of the 7-point checklist

Diagnosis performance

Sensitivit Specificit
ensitivity pecificity AUC
[%] [%]
1) Baseline 59.6 82.8 0.712
2) +VAT 63.6 92.3 0.780
3) +VAT +MTL 72.7 84.6 0.787
Dermatologists
76.0 80.3 0.781

(gold standard)

erence. These were trained using the indicator-labeled dataset
A and the diagnosis-labeled dataset B.

We also calculated the standard deviation of the determi-
nations made by dermatologists for each indicator and the
diagnostic results based on the predicted 7-point checklist.

IV. RESULT

Table II summarizes the prediction performance for each
item defined in the 7-point checklist. Here, we add the standard
deviation of the gold standard results (as assigned by four
expert dermatologists) to the table as a reference. The range
of each indicator was [0,1], and prediction performance was
evaluated using the mean absolute error (MAE). Table III com-
pares the diagnosis performance based on indicators predicted
under conditions (1) to (3) with the gold standard results. Note
that the diagnosis is calculated based on the definitions of the
7-point checklist (see Section II-A).

Table IV shows the diagnosis performances of the two
classifiers that only discriminated between melanoma or nevus,
for comparison purposes. These results were not based on the
7-point checklist.

With the introduction of VAT, the prediction error of each
indicator in the checklist was reduced by about 2% on average,
and the accuracy of melanoma diagnosis calculated based on
these indicators improved by about 6.8% in area under the
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TABLE IV: Diagnosis performance on direct discrimina-
tion of melanomas

Diagnosis performance

Sensitivit Specificit
ensitivity pecificity AUC
(%] [%]
the indicator-labeled dataset A T 77.9 85.6 0.814
the diagnosis-labeled dataset B ¥ 84.6 92.6 0.886

T comparable with 1) or 2) in Table III
¥ comparable with 3) or dermatologists in Table IIT

TABLE V: Example images, and predicted scores and associ-
ated gold standard

.3

v :
(a) MAE = 0.117 (b) MAE = 0.073 (c) MAE = 0.479
(Melanoma) (Nevus) (Melanoma)
t sl S2 S3 S4 S5 S6 S7  M/NF
@ True 0.00 1.00 060 000 080 070 100 1.00
Predicted 030 094 058 0.10 091 1.00 097 099
®) True 0.00 0.00 0.00 000 000 050 000 0.00
Predicted 0.05 0.03 0.03 000 002 017 008 0.05
© True 100 1.00 000 100 1.00 1.00 1.00 1.00
C
Predicted 0.73 042 030 008 052 058 030 0.85

T Indicators S1-S7 are from 7-point checklist
¥ M/N : classifier of Melanoma or Nevus

ROC curve (AUC). With the additional introduction of multi-
task learning to learn tumor malignancy simultaneously, the
improvement in the predictive ability for each item was limited
to 0.6% compared to the baseline, while the AUC significantly
improved by 7.5% (AUC = 0.787) compared to the baseline
(AUC = 0.712). This score is equal to or better than the
results based on indicators provided by four experts as the gold
standard (SE = 76.0%, SP = 80.3%, AUC = 0.781) or results
from the literature (SE = 75.0%, SP = 76.2%) [1]. However,
the diagnosis performances based on the 7-point checklist
(Table III) was lower than that obtained with classifier that
pursuit only the final diagnosis results (Table IV).

Table V shows three example images, with their associated
gold standard and predicted scores. The first two, (a) and (b),
give good estimation results, while (c) has a larger error.

V. DISCUSSION

Based on the fact that the average prediction error of our
model (0.222 or 0.236) is close to the standard deviation of
four dermatologists (0.197), used here as a gold standard,
and since the diagnosis performance calculated from those
estimated indicators is equal to or better than that of the



dermatologists, it can be seen that our proposed method gives
good results in terms of estimation of the indicators defined
in the 7-point checklist. Some individual cases such as (c¢) in
Table V sometimes show under-estimation for some structures.
This is not always the case, but can be seen in the prediction of
structures that occur less often in the training dataset. Although
these issues remain, we were able to achieve good prediction
performance, as a result of an effective combination of semi-
supervised VAT training and multi-task learning in a situation
where only a limited number of training labels is available.

A comparison between Tables III and IV shows that the
model that predicted only the final diagnosis (melanoma or
nevus) achieved a much higher diagnosis performance than the
models predicting it via human-oriented diagnosis indicators.
This demonstrates the limitations of the diagnostic indicators
designed for human readability. The explainability of these
medical systems is very important, and there are no quantita-
tive alternative measures. Based on these results, we believe
that it is desirable to use two models simultaneously, where
the first concentrates on diagnosis performance, and the second
is specialized for readability based on these clinically proven
criteria. We intend to continue our investigation to create better
and more explainable models.

VI. CONCLUSION

In this paper, we developed a prediction model for the
dermoscopic structures defined by a 7-point checklist. We
demonstrated that our method, based on an effective combi-
nation of VAT, semi-supervised learning and the multi-task
learning, shows promising performance. We believe these
quantified dermoscopic structures can form the grounds for
automated diagnosis.
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