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Abstract—X-ray examinations are a common choice in mass
screenings for gastric cancer. Compared to endoscopy and other
common modalities, X-ray examinations have the significant
advantage that they can be performed not only by radiologists
but also by radiology technicians. However, the diagnosis of
gastric X-ray images is very difficult and it has been reported
that the diagnostic accuracy of these images is only 85.5%. In
this study, we propose a practical diagnosis support system for
gastric X-ray images. An important component of our system is
the proposed on-line data augmentation strategy named stochas-
tic gastric image augmentation (SGAIA), which stochastically
generates various enhanced images of gastric folds in X-ray
images. The proposed sGAIA improves the detection performance
of the malignant region by 6.9% in Fl-score and our system
demonstrates promising screening performance for gastric cancer
(recall of 92.3% with a precision of 32.4%) from X-ray images
in a clinical setting based on Faster R-CNN with ResNet101
networks.

Index Terms—gastric cancer, X-ray images, data augmentation,
convolutional neural networks, computer-aided diagnosis

I. INTRODUCTION

Gastric cancer is the third most common cancer, with
1,000,000 new diagnoses and 780,000 deaths annually [1]. Ad-
vanced gastric cancer has a poor prognosis but early prognosis
before metastasis is good, so early detection and appropriate
treatment are important. In general, an X-ray examination
and endoscopy are used for gastric cancer diagnosis. After a
cancer diagnosis has been confirmed, other medical modalities,
such as CT and PET/CT, are used for examination of cancer
progression if necessary. Endoscopy is now widely used and
has demonstrated superior detection capability to the other
techniques, with a sensitivity of 95.4% [2]. Nevertheless,
X-ray imaging has a great advantage. Endoscopy must be
performed by only radiologists, whereas X-ray imaging can be
done with both radiologists and technicians. However, gastric
X-ray diagnosis is challenging, especially for inexperienced
radiologists and the acquisition of this diagnostic skill takes a
very long time compared to other diagnostic imaging methods,
such as CT, MRI and PET/CT. Accordingly, the diagnosis
ability varies greatly between inexperienced and expert radi-
ologists. According to statistics, the diagnostic accuracy of
gastric X-ray examination is 85.5% [2].
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In medical practice, one of the basics of gastric X-ray
diagnosis is finding inflammation of the gastric mucosa surface
[3]. Gastric folds of healthy subjects show thin, smooth and
parallel characteristics, while their appearance changes in
thickness and size, showing irregular bends, pits, breaks in
their inner membrane (i.e. mucosa) due to gastric diseases
caused by inflammation, infection, ulcers and so on [4]. Based
on the above medical findings, several automated diagnosis or
diagnosis support systems have been proposed to alleviate the
burden of radiologists and incorrect diagnoses. Ishihara et al.
developed an image-based classifier of H. pylori infection, one
of the major causes of gastric cancer, from a total of 2,100
patient data with eight images for each patient. They focused
on mucosal patterns and gastric folds after the infection and
calculated a large number of statistical features (i.e. a total of
7,760 per case), including texture, shape and gradient-based
ones from the image. Their diagnosis model with a traditional
SVM classifier attained a sensitivity of 89.5% and a specificity
of 89.6% [5]. In addition, Abe et al. focused on the symptoms
of gastric folds on gastric X-ray images and designed their
original handcrafted features based on an original image
processing method. They reported excellent performance in
detecting abnormal lesion locations (e.g. precision of 89.3%
with a recall of 100%) with traditional classifiers, such as LDA
and SVMs [6]. The design of their handcrafted features looks
reasonable, but since the number of images for performance
validation is very small (88 cases including 13 abnormal cases)
and the images taken are in research conditions (i.e. controlled
geometry), the performance in a practical environment needs
to be further verified.

In recent years, deep learning techniques have demonstrated
their outstanding performance and have dramatically changed
the traditional machine learning schema. Convolutional neural
networks (CNNs) are today ’ s indispensable elements of deep
learning, and have achieved excellent results, not only in
computer vision but also in wide areas, including medical
applications [7]. The most preferred benefit of CNNs is that
they automatically capture efficient features for their target
tasks from the training. In a related study, CNNs were used
to diagnose gastric cancer from X-ray images and showed
a sensitivity of 89.5% and a specificity of 93.5% based on
images from 2,100 patients, each consisting of eight images
[8]. Togo et al. achieved a precision of 98.3% and a recall



of 96.2% according to their CNN classification using 815
patients data (6,520 images) in a study using double-enhanced
upper gastrointestinal barium radiography [9]. Although these
methods show superior results, they assume that the ROI
for diagnosis (i.e. candidate of lesions) has been shown in
advance. In practical situations, it is desirable for the system to
be able to detect ROIs in order to eliminate medical oversight.

In a computer vision field, several integrated strategies, such
as region-based CNN (R-CNN) [10], Faster R-CNN [11] and
single-shot multibox detector (SSD) [12] based on CNNs,
have been proposed. These techniques have also applied in
wide variety of computer vision tasks. With these sophisticated
techniques, Li et al. analyzed a total of 1,231 chest X-ray
images with R-CNN to detect eight types of lung disease
[13]. They defined correct detection using an intersection over
union (IoU) greater than 0.5 between the detected bounding
box and the ground truth box. Their system attained 7-
84% disease localization accuracy for each disease, with an
average of 26.9% under the five-fold validation. On gastric
endoscopic images, the SSD-based system based on 13,684
images achieved a sensitivity of 92.2% and a specificity of
30.6% [14]. As can be seen from the literature above, the
integrated task of target detection and classification is more
difficult than that needs only classification. In the classification
only task, only controlled images (e.g. on pre-determined
geometry) are subject to analysis. This is namely that the ROI
must be inside of the image, so the diversity of the image is
much less than the task needs to determine both. To the best of
our knowledge, few investigations offer an integrated process
for ROI detection and diagnosis on gastric X-ray images. In
this context, we aim to realize an efficient diagnosis support
system that simultaneously detects the involved areas from the
gastric X-ray image and diagnoses each area.

The major challenge of our study is to achieve practical
accuracy using a limited number of available gastric X-
ray images for training. Usually, the abovementioned deep-
learning based integrated methods require a significant amount
of training data with appropriate annotation, but it is very
expensive especially in medical tasks like this. In addition,
the gastric X-ray images involved in the study were taken
in clinical settings, not research settings. In other words, our
image conditions, such as geometry, angle and size are not
strictly controlled, making them very diverse and difficult to
investigate compared to research-quality images used in the
literature. We believe that achieving satisfactory performance
in this difficult clinical setting is a condition for realizing
a practical diagnostic support system. Therefore, this study
addresses these issues by introducing our effective on-line data
augmentation based on medical knowledge, called stochastic
gastric image augmentation (SGAIA), rather than simply rely-
ing on the power of deep learning.

The contributions of this study are summarized as follows:

o To the best of our knowledge, this is the first practical
screening system for gastric cancer from X-ray images
in a clinical setting.
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e Our proposed on-line data augmentation strategy based
on medical knowledge, SGAIA, has realized a practical
accurate screening system for gastric cancer.

II. METHODS

In this study, we propose a practical diagnostic support
system for gastric X-ray images in clinical settings with
various difficulties. In order to achieve this goal with a limited
number of training images, we propose sGAIA, an on-line
data augmentation based on medical evidence, and combined
it with an excellent object detection algorithm, Faster R-CNN
[11].

A. Stochastic gastric image augmentation (sGAIA)

The proposed sGAIA is an effective on-line data augmen-
tation strategy to enhance the gastric folds of X-ray images
with reference to the literature [6]. We expect that the accuracy
of the diagnosis would improve if the detector is trained on
images in which areas relevant to diagnosis are emphasized.
In their method, they detected gastric fold candidate regions
based on the gradient and high-frequency component of the
given gastric X-ray image. Then, based on the determined
gastric fold regions, they calculated their hand-crafted image
features for the next diagnosis stage. Specifically, let the
gastric X-ray input image be I(x,y), their gradient VI(x,y),
and the high-frequency components of the original image,
H(z,y). They normalized VI(z,y) and H(z,y) into [0, 1]
and performed the K-means clustering with K=2. This process
divides the image I(z,y) into two regions per pixel. They
regard the region belonging to the cluster with larger mean
gradient and high-frequency component as the gastric fold
edge candidate. However, since this method was designed to
detect gastric folds in a controlled condition (i.e. geometry
of images is almost identical among dataset), obtaining the
necessary performance would not be easy in a clinical setting.
In addition, this algorithm is developed for preprocessing, an
effective collaboration with recent deep learning techniques
was not considered. That is, this method yields one candidate
of gastric region image per image. The proposed sGAIA is a
fast and effective on-line data augmentation method that can
be combined with deep learning techniques and overcomes the
drawbacks of the above method. Figure 1 shows the schematic
of sGAIA. The key feature of the proposal is to statistically
determine the gastric fold candidate regions and avoid time-
consuming clustering. The details of sGAIA consist of the
following four steps:

o (Step 1) Calculation of edge strength

Firstly, a contrasting enhanced image of the original
gastric X-ray image I(z,y), I.(z,y) is generated with
equalizing the histogram of a grayscale image. Then,
we obtain its gradient and high-frequency component,
Vi.(z,y), and H.(x,y), respectively. Each of them is
normalized into [0, 1] and we calculate the normalized
edge strength E(x,y) as follows. Here, T is the normal-
ized value of xto[0,1].



E(z,y) = (VI.(v,y) + He(w,y))/2

o (Step 2) Calculation of selection probability of gastric
edge candidate region
We select the gastric edge candidate region with proba-
bilistic manner per pixel. We obtain the probability map
of the gastric fold edge, p(z,y), using the pre-determined
table, as shown in Table I and E(z,y). Note that the
probability in this table is determined according to our
preliminary experiments.

e (Step 3) Determination of gastric fold edge region
According to the probability map p(z,y), we determine
a binary gastric fold edge region. Since this region is
noisy, we perform a morphological opening operation to
eliminate too many small isolated regions. Let G(z,y)
be a binary mask representing gastric fold edge regions
obtaining by this process.

o (Step 4) Enhancement of gastric edge region
Finally, an enhanced gastric fold edge image A(z,y) is
obtained with the following linear combination.

A(z,y) = I(v,y) + aG(z,y) +

Here, a and B are hyper parameters. They were selected
in the range of a from 0.9 to 1.0 and B from -15 to -5
according to the results of preliminary experiments.
On this basis, the proposed sGAIA stochastically determines
the location and strength of the gastric fold edge regions each
time. Since it provides different location and strength of them
at each trial, sSGAIA has a high affinity with on-line data
augmentation in the training of deep neural networks.

B. Detection of malignant regions from gastric X-ray images

Figure 2 illustrates our overall system architecture. We used
Faster R-CNN [11] to localize the malignant regions from
gastric X-ray images taken in a clinical setting. Faster R-
CNN provides an integrated process of detection of target
objects and their classification. It is generally slower than
the methods proposed later, such as R-FCN [15] and SSD
[12] but are known to be more accurate than these techniques
[16]. In addition, this weakness is greatly reduced when the
number of areas to be detected is limited like our target task.
Therefore, we choose this model in this study. The input of
our system receives 2,048 x 2,048 pixels. In the Faster R-
CNN model, we fine-tune ResNet101 [17] pre-trained with the
ImageNet dataset for generating feature maps and the last layer
of conv4_x block (conv4_23) were used as the input for region
proposal networks. Note here, the image size was reduced
into 600 x 600 pixels before feeding it to the network. The
configuration of fully connected layers is the same as original
study, and the number of output node is one that represents
the malignancy score.

III. EXPERIMENTS

The image set used in this study consists of a total of
3,832 gastric X-ray images in a clinical setting from 105
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TABLE I
SELECTION PROBABILITY AS GASTRIC FOLD EDGE CANDIDATE REGION

Normalized edge strength e=FE(x,y) | Probability (%)
0<e<04 0
04<e<05 30
0.5<e<0.6 50
06<e<0.8 70
0.8<e<1.0 95
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Fig. 1. Overview of stochastic gastric image augmentation

patients (672 images with 1,126 lesion annotation by radiolo-
gists and 3,160 images without lesions) acquired from Tokai
University School of Medicine, Japan. Each image used in
these experiments is 8-bit grayscale and has a resolution of
2,048 x 2,048 pixels. We created the smallest rectangle that
encloses the lesion areas based on the given annotations. In
order to build a robust lesion detector in terms of various le-
sion sizes, shapes and resolutions, on-line data augmentations
(random crop, random flip, random rotation and brightness
augmentation) are performed on the training data and we treat
this as a performance baseline. In the training of our Faster-
RCNN model, the learning rate, batch size and number of
training iterations are set to 0.001, 4, and 100, respectively.
The momentum SGD [18] is used as an optimizer and its
exponential decay rate of the first order moment is set to
0.9. In the training and evaluation, we used patient-based five-
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Fig. 2. Overview of proposed detection system
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Fig. 3. Example of augmented images generation process by sGAIA and comparison of intensity

(a) Ie(z,y), (b) p(z,y), (c) One example of G(z,y),

(d) One example of A(x,y), (e) Line profile of (a), (f) 10 line profiles of images generated by sGAIA

group cross-validation, i.e., the images from the same patient
is not divided into the training and evaluation. Precision,
recall and Fl-score are used as performance metrics in our
system. Our system provides candidate lesion boundary boxes
with associated confidence score and we accept those boxes
above the predefined detection threshold a. The larger a
is selected, the fewer the detection boxes and vice versa. In
order to confirm the effectiveness of the proposed sGAIA, we
conducted three evaluation experiments:

« Baseline: Train our network with only four-types of on-
line data augmentations described above (random crop,
random flip, random rotation and brightness augmenta-
tion).

Preprocess based on [6]: We enhanced the fold regions
of the given X-ray image with the process used in [6]
and those enhanced images and above data augmentations
were used for training. Specifically, the fold candidate
regions (i.e. binary map) were determined by K-means
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algorithm, G'(z,y) and the enhanced images A'(z,y)
were calculated in the similar way as the (step 4) of
sGAIA. Here, we used a = 0.95, 8 = -10, the best
combination in preliminary experiments.

SGAIA: Train our network with above augmentation with
the proposed sGAIA. Here, we randomly choose the
hyper parameter from 0.9 < o <1.0 and -15< 3 <-5.

IV. RESULTS AND DISCUSSIONS

Figure 3 shows an example how sGAIA produces aug-
mented images A(z,y) from the original contrast enhanced
images I.(x,y) and their line profiles. Here, Figs. 3(e) and
(f) are the line profile of the I.(z,y) and ten line profiles of
images generated by sGAIA, respectively. The final detection
performance are summarized in Table II with typical detection
threshold « and the receiver operating characteristics curves
are in Fig. 4. Figure 5 shows a comparison of the detection
results with baseline and the sGAIA. From the comparison of



TABLE II
DETECTION RESULTS FOR THE THREE EXPERIMENTS

a=0.3 a=0.2 | a=0.15
(%) (%) (%)
precision 43.0 26.8 12.7
Baseline recall 59.1 88.4 93.8
Fl-score 49.8 41.1 22.4
Preprocess precision 46.6 30.1 13.7
based on [6] recall 61.3 89.6 95.9
F1-score 52.9 45.1 24.0
precision 48.9 324 14.2
sGAIA recall 63.5 92.3 97.5
Fl-score 55.3 48.0 24.8

the line profiles, we can find that the proposed sGAIA gen-
erates a variety of suitable augmented images. We confirmed
from these results that the proposed sGAIA largely improved
the lesion detection performance and showed superior perfor-
mance to the baseline and the method that achieved excellent
results in the past study [6]. At the detection threshold a =
0.20, our proposed system showed good balance of detection
performance for malicious regions (recall of 92.3% with a
precision of 32.4%). At this threshold, the recall rate is almost
7% better than radiologists reported in literature ( 85.5%) and
the ratio of true positive:false positive is suppressed to 1:3.
In other words, it is highly likely that 1/3 of the detected
regions by our system are malicious. Since the purpose of this
study is to act as a practical screening system for gastric X-ray
images, this result is promising. In addition, since the proposed
SGAIA is an on-line augmentation technique, it therefore does
not affect the execution time during testing. The processing
time required to process one X-ray image is 0.360 s. From
this point of view, the proposed sGAIA is very suitable for
application as a screening system. In contrast, our proposal
with sGAIA may fail if normal classifier successfully identify
the location of the malignancy lesion, such as the bottom
case of Fig. 5. We believe this is caused by inappropriate
enhancement of the training images introduced by sGAIA.
In the future, we will improve these problems by developing
methods that focus more on and emphasize the area around
the lesion.

V. CONCLUSIONS

In this study, we proposed a stochastic gastric image aug-
mentation method for the automated detection of gastric cancer
from X-rays, in which we emphasis gastric folds prior to
training. Based on experiments, we have confirmed that our
proposed augmentation technique improves considerably the
detection performance of gastric cancer tumors from X-ray
images in a clinical setting.
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