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Abstract—In this paper, we present an automated melanoma
screening system that supports not only melanocytic skin le-
sions (MSLs) but also non-melanocytic skin lesions (NoMSLs).
Melanoma is known as the most fatal skin cancer. Therefore,
early detection is highly desired. However, melanoma diagnosis
is not easy even for expert dermatologists. In such a back-
ground, several researchers have developed automated methods
for melanoma detection but they mostly focused only on MSLs
while NoMSLs have been almost neglected. To expand the scope
to NoMSLs, we developed two melanoma classification models,
namely the single-shot and the double-shot. The single-shot
model differentiates melanomas from all the other skin lesions
including NoMSLs. The double-shot model divides the task into
two subtasks. Firstly, it differentiates MSLs from NoMSLs and
then differentiates melanomas from the other MSLs. The single-
shot achieved a sensitivity (SE) of 92.9% and a specificity (SP)
of 83.9%, while the double-shot achieved an SE of 97.6% and an
SP of 92.2% when 10 image features were used. The double-shot
showed superior detection performance to the single-shot except
when their constituent image features were limited.

Index Terms—dermoscopy, melanoma, computer-aided diag-
nosis

I. I NTRODUCTION

Skin cancers have varying malignancy and symptoms. The
three most common skin cancers are melanoma, basal cell
carcinoma (BCC), and squamous cell carcinomas (SCC).
Melanoma originates from melanocytes. It is the most life-
threatening skin cancer because it grows fast and metastasizes
rapidly. BCC originates from basal cells is the least harmful
but has the highest incidence among all the skin cancers
[1]. SCC originates from squamous cells grows slower than
melanomas but develops metastasis at later stages.

Skin lesions that originate from melanocytes such as
melanomas, Clark nevi, Spits nevi are called melanocytic
skin lesions (MSLs). Other skin lesions originate not from
melanocytes such as BCCs, SCCs, hematomas, hemangiomas,
Seborrheic Keratoses are called as non-melanocytic skin le-
sions (NoMSLs). BCC and SCC account for the majority of
skin cancers: BCC 80%, SCC 16%, and melanoma 4% in the
United States [2]. Despite the low incidence of melanomas,
75% of death of overall skin cancers is caused by them [3].

Melanoma is especially difficult to cure after the metastasis
stage. The five year survival rate is only 9-15% at the stage IV,
while on the other hand, it goes up to 85-99% if detected at
the stage II [4]. Therefore, early detection is highly needed

to reduce the mortality of melanoma [5]. Dermoscopy, a
dermatological device to inspect skin lesions, is used for
accurate melanoma diagnosis. With the aid of dermoscopy,
accuracy in melanoma diagnosis has increased by 10-27% [6]
but it was still remained around 75-88% [7]. To tackle the
issues, several computer-aided melanoma detection systems
have been developed [8]-[12]. The computer-aided techniques
are expected to be a supplementary help for both inexperi-
enced and experienced clinicians. The basic procedures for
the automatic melanoma detection consists of the 3 steps:
(1) tumor extraction, (2) feature extraction, and (3) classifier
development.

As for some recent achievements,　 Celebi et al. [10]
achieved a sensitivity (SE) of 93.3% and a specificity (SP) of
92.3% based on 564 dermoscopy images. Even though there
are several limitations, this is one of promising results. We
have been developing an Internet-based melanoma screening
system [11] and keep investigating on improvement (current
URL is http://dermoscopy.k.hosei.ac.jp). Our latest system was
built based on a total of 1,455 dermoscopy images with the
confirmed diagnosis and supports not only usual pigmented
skin lesions, but also acral volar lesions [12]. The classification
accuracy of the system is around 86% in SE and SP for the
former and 93% in SE and 91% in SP for the latter. With
the advantage of the Internet-connection, everyone who has a
dermoscopy can use our system.

These conventional researches aimed at detecting
melanomas from only MSLs while NoMSLs were almost
neglected [13]. Therefore, if an NoMSL is fed into these
systems, they may yield undesired results. One reason
for NoMSLs being neglected is because discriminating
melanomas from NoMSLs is comparatively easier than those
from the other MSLs for dermatological experts. However,
this differentiation is not always easy for physicians with
different expertise and inexperienced dermatologists. When
we consider to widen the target user of our Internet-based
system also for those potential users, supporting NoMSLs is
necessary.

In our previous studies, we have developed sophisticated
tumor extraction algorithm for both MSLs and NoMSLs [13]
and built a classifier for discriminating them [14]. In these
studies, we confirmed that only two image features (“the
skewness of bright region in the tumor along its major axis”



and “the difference between the average intensity in the
peripheral part of the tumor and that in the normal skin area”)
differentiated MSLs and NoMSLs quite well (98.0% in SE,
86.6% in SP).

In this paper, we describe the development of melanoma
classification method that supports both MSLs and NoMSLs.
The motivation behind the study is the strong demand of
melanoma detection in early stages, and the desire to make
the current system more practical also for physicians who have
different expertise.

II. M ATERIAL

We collected dermoscopy images with established diagnosis
from Keio University Hospital in Japan. The following 3 sets
of images were used in this study.

Dataset-A: 42 malignant melanomas (MSL-m): The primary
concern of our study is to detect melanomas from all other skin
lesions.

Dataset-B: 506 melanocytic nevi (MSL-n): This type of
benign skin lesions has been the main target of automated
melanoma diagnosis because of the difficulty in distinguishing
them from melanomas.

Dataset-C: 110 non-melanocytic skin lesions (NoMSLs):
34 BCC, 59 Seborrheic Keratoses, 3 hemangioma, and 11
hematoma.

The datasets were 24-bit JPEG images with a typical
resolution of 1136x852 pixels. The diagnosis was made by
histopathological examination or clinical agreement by several
expert dermatologists.

III. M ETHOD

A. Tumor Extraction

Analysis of border regions of the tumor is important for
accurate diagnosis of skin lesions. Therefore, we need to
segment out appropriate tumor area from dermoscopy images
first. Conventional tumor extraction methods mostly focused
on only MSLs whereas NoMSLs were neglected. This is be-
cause classification tasks for NoMSLs have got less attention,
as mentioned before, and NoMSLs have a wide variety in
appearance compared to MSLs and often have ambiguous
borders. These properties make it difficult to segment out
appropriate tumor area.

Recently, we developed a general tumor extraction algo-
rithm that supports both MSLs and NoMSLs [13]. The method
uses some color thresholding and morphology operations and
outperforms all the other state-of-the-art methods for NoMSLs
and equivalent or better for MSLs. We used this algorithm to
segment out the tumor area for all the images in the datasets.
Please refer to our original literature [13] for more detail.

B. Feature Extraction

After extracting the tumor areas, we calculated 428 image
features [11] for each image with reference to the ABCD rule
[15], commonly used clinical findings. The image features
were designed to be scale-invariant and rotation-invariant. The
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breakdown of the features are: 80 asymmetry, 32 border, 140
color, and 176 texture.

As for asymmetry features, circularity and gravity center
of each brightness level etc. were calculated. For border
features, color gradient between internal and peripheral of
the tumor were calculated. For color features, basic color
characteristics (e.g. minimum, average etc.) of the tumor (e.g.
internal, peripheral, outside of the tumor) in several color
channels (e.g. RGB channel, HSV channel) were calculated.
In addition, the pleochroic features were also calculated. For
texture features (represent “Dermoscopy structures” in the
ABCD rule), correlation, energy, entropy, and moment features
with different angle and unit resolution were calculated. Please
refer to our previous literature [11] for detail.

C. Classification

We introduced two classification models for detecting
melanomas: namely, the single-shot model and the double-
shot model as illustrated in Fig. 1.

The single-shot determines whether the input is melanoma
(A: MSL-m) or not (B: MSL-n, C: NoMSLs) by a single linear
classifier “A-BC”. The double-shot detects melanoma with two
steps. Firstly, it determines whether the input is MSLs (A, B)
or NoMSLs (C) by the “AB-C”. If the input was classified as
an MSL, the second classifier “A-B” determines whether the
input is MSL-m (A) or MSL-n (B). The idea is to decompose
the whole task into the two subtasks: (1) discard NoMSLs and
keep MSLs, (2) discard MSL-n and detect MSL-m.

We used linear classifiers in both models. One of the
most important steps for developing a classifier is to select
appropriate features. We used an incremental stepwise method
with a hypothesis test of Wilks’ lambda [16] in this study.

As for supervised output, we assigned +1 to MSL-m in the
A-BC, MSLs in the AB-C, and MSL-m in the A-B classifiers.
On the other hand, -1 was assigned to the other cases.

After the linear model is developed, the threshold for binary
classification is adjusted to optimize the evaluation criteria
such as sensitivity (SE) and specificity (SP). In this study,
SE denotes the ratio of melanomas (A: MSL-m) success-
fully classified as melanomas. SP denotes the ratio of non-
melanomas (B: MSL-n and C: NoMSLs) classified as either
MSL-n or NoMSLs. Some erroneous cases such as MSL-
n (B) is misclassified as NoMSLs (C) and vice-versa are
also counted as successful classification because in melanoma
screening, differentiation between MSL-n and NoMSLs is not



TABLE I
SELECTED FEATURES FOR EACH LINEAR CLASSIFIER

single-shot model double-shot model
classifier A-BC AB-C A-B

category detail category detail category detail
color std-R (P)† asymmetry skew-x (180) color #HSV16 (T)
color ave-R (P-N)† color ave-B (P-T) color max-R (T-N)
border grad-V (1/20)⋄ color ave-G (P-N) asymmetry std-y (55)
color std-H (P) asymmetry skew-y (155) color ave-S (N)

Top 10 features asymmetry std-x (255) border grad-B (1/5) color ave-R (P-N)
color #RGB16 (T)⋆ asymmetry skew-y (130) color skew-R (T-N)
asymmetry skew-x (205)∗ asymmetry std-x (180) color min-R (T-N)
texture correlation-90◦ (1/4) ‡ asymmetry std-x (30) color ave-B (P-T)
texture correlation-135◦ (1/5.7) color min-B (P) texture correlation-90◦ (1/5.7)
texture correlation-45◦ (1/11.3) asymmetry circularity (30) texture correlation-135◦ (1/5.7)

#features 17 33 34

The following abbreviations are used: target area: T(tumor), N(normal skin), P(peripheral); color channel: R/G/B and H/S/V; image axis:
x(major axis of the tumor), y(minor axis of the tumor).
†: std-R (P): Standard deviation(std) of red(R) in peripheral(P) area; ave-R (P-N): Difference in average of red(R) between peripheral and
normal skin (P-N) areas.⋄: grad-V (1/20): Gradient in luminance (V) between the inside and the outside of the tumor with the ROI size
of 1/20 of the long side of the image.⋆: #RGB16: The number of colors used in tumor (T) quantized in163 RGB color.∗: skew-x (205):
Skewness of the distribution of the tumor area whose intensity is less than 205 in the major axis.‡: correlation-90◦ (1/4): Correlation property
of the luminance of the tumor area in the direction of 90 degree from the major axis of the tumor with the unit size of 1/4 of the long side
of the image.

very stressed as long as these two are not misclassified for
MSL-m.

In the double-shot model, classification performance de-
pends on adjustment of thresholds in both of the AB-C and
A-B classifiers. Therefore, in order to acquire appropriate
combination of the SE and SP, we conducted grid search in two
dimensional space whose axes correspond to the output of each
classifier. Note that the thresholds (equivalent to constant term
of the linear models) are determined collectively based on the
interaction of the two classifiers while coefficients of the linear
models except constant term are determined individually.

IV. RESULTS

Table I summarizes the result of stepwise feature selection.
The ‘Top 10 features’ shows the selected features for each
classifier when the number of the selected hit 10. The #features
shows the number of the selected features at the last step.

Table II shows the summary of classification performances
of the single-shot and double-shot models under different
number of features. The performance was evaluated under the
leave-one-out cross-validation test. The #features denotes the
number of features used in each classifier. Note that each of
the AB-C and A-B classifier in the double-shot model uses
the same number of features as specified by #features.

SE and SP denote the successful classification ratio of MSL-
m (A) and the rest (B, C) respectively as mentioned in III-C.
We adjusted the classification thresholds to maximize SE×SP.

Error:X→Y means the ratio of X misclassified for Y. Here,
error:B→C and error:C→B were not counted since the differ-
entiation of these two is not necessarily important as discussed
in III-C. The receiver operating characteristic (ROC) curve is
drawn and area under the ROC curve (AUC) is calculated for
the single-shot model. AUC is not shown for the double-shot

model because the model has two threshold values, making it
difficult to define a proper value corresponding to AUC.

V. D ISCUSSION

From table I, we can see in the double-shot model that the
AB-C is assigned many asymmetry features while the A-B is
assigned many color features. On the other hand, the A-BC is
assigned both types of features altogether. This indicates that
the A-BC needs to conduct both tasks of the AB-C and A-B
all at once. Here, since the A-BC has notably smaller number
of features (17) compared to the AB-C (33) or A-B (34), we
see that it is comparatively difficult to find effective features
for the A-BC due to dataset C (NoMSLs) being included in
the classification target.

According to max[SE×SP] in table II, the single-shot is
better than the double-shot when the selected features are
less than 4. However, the double-shot becomes far better than
the single-shot with 4 or more features. Actually, the double-
shot with only 4 features outperforms the single-shot with
10 features. The highest max[SE×SP] in the single-shot was
0.856 with 17 features while the double-shot with 10 features
achieved equivalent or better performance.

As for error ratio in the double-shot, with number of features
4 or more, “error:A→B or C” becomes quite low while
error:B→A and error:C→A decrease significantly with the
features around 10 or more. In the single-shot, “error:A→B or
C” decreases according to increment of features but the other
errors do not decrease as much as those in the double-shot.

In most cases in the single-shot model, error:C→A is much
larger than error:B→A. This is probably because dataset C
(110 images) has less images than dataset B (506 images).
As the single-shot tries to distinguish A from B and C by
a single classifier, it puts greater emphasis on B over C in
feature selection, leading to the poor performance for the



TABLE II
PERFORMANCE OF THE TWO CLASSIFICATION SYSTEMS WITH DIFFERENT NUMBER OF FEATURES

max[SE×SP] (AUC: SE%, SP%)∗ error:A→B or C (%) † error:B→A (%) error:C→A (%)
#features single-shot (SS) double-shot (DS)⋆ SS DS SS DS SS DS

2 0.670 (0.872: 90.5, 74.0) 0.628 (69.0, 90.9) 9.5 31.0 20.9 6.7 49.1 20.0
3 0.683 (0.907: 76.2, 89.6) 0.619 (69.0, 89.6) 23.8 31.0 6.5 6.9 28.2 26.4
4 0.700 (0.913: 78.6, 89.1) 0.783 (97.6, 80.2) 21.4 2.4 5.9 19.8 33.6 20.0
5 0.690 (0.918: 76.2, 90.6) 0.763 (100, 76.3) 23.8 0.0 7.5 23.9 18.2 22.7
6 0.680 (0.916: 83.3, 81.7) 0.813 (95.2, 85.4) 16.7 4.8 14.6 14.0 35.5 17.3
10 0.779 (0.944: 92.9, 83.9) 0.900 (97.6, 92.2) 7.1 2.4 12.8 7.1 30.9 10.9
17 0.856 (0.968: 97.6, 87.7) 0.916 (97.6, 93.8) 2.4 2.4 10.3 6.3 21.8 5.5
33 0.981 (100, 98.1) 0.0 2.0 1.8

∗: Performance was evaluated under leave-one-out test.
⋆: AUC value is not available due to plural thresholds.
†: “Error:A→B or C” means the ratio of A (MSL-m) misclassified for B (MSL-n) or C (NoMSLs).

smaller dataset C. These problems did not happen to the
double-shot since it isolates C then B in sequence. Since the
classification task is divided into easier subtasks, the stepwise
selection yielded more effective features, as indicated by the
performance improvement.

However, the double-shot model has poor performance
when #features was less than 4. This is probably because at
least one classifier had insufficient performance due to lack
of efficient features and it caused a severe degradation of the
overall performance.

The double-shot model with 10 features achieved an SE of
97.6% and an SP of 92.2%. Although it is difficult to compare
results directly since different datasets were used, our result
is established on comparatively large number of images and
showed superior performance to other state-of-the-art methods
reported in [12]. Even though distinguishing melanomas from
NoMSLs is considered to be easy for experts, NoMSLs are
commonly seen in real world. This achievement should be
help of overall melanoma detection performance.

VI. CONCLUSION

In this paper, we presented two melanoma detection models,
namely the single-shot and the double-shot, that handle both
melanocytic skin lesions (MSLs) and non-melanocytic skin
lesions (NoMSLs). Under the leave-one-out cross validation
test, the double-shot achieved an SE of 97.6% and an SP of
80.2% with 4 features each. This is better than the single-shot
with 10 features. The double-shot divides the classification
task into two smaller subtasks and makes it easier to find
effective features, leading to superior performance to the
single-shot model except the number of features is limited. We
are planning on applying the proposed models to our Internet-
based melanoma screening system in near future.
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