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Abstract—Content-based image retrieval (CBIR) technology
for brain MRI is needed for diagnostic support and research. To
realize practical CBIR, it is necessary to obtain a low-dimensional
representation that simultaneously achieves (i) data integrity,
(ii) high disease retrieval capability, and (iii) interpretability.
However, conventional methods based on machine learning tech-
niques such as variational autoencoders (VAE) cannot acquire
representations that satisfy these requirements, and an ad-hoc
classification model must be prepared for disease retrieval. In this
paper, we propose Isometric Feature Embedding for CBIR (IE-
CBIR), a low-dimensional representation acquisition framework
that simultaneously satisfies the above requirements. In the
evaluation experiment using the ADNI2 dataset of t1-weighted
3D brain MRIs from 573 subjects (3,557 cases in total), the
low-dimensional representation acquired by IE-CBIR (1/4,096 of
the number of elements compared to the original) achieved a
classification performance of 0.888 in F1 score and 91.5% in
accuracy for Alzheimer’s disease and normal cognitive subjects
without the need for ad hoc models, while achieving a high
preservation of the original data. This diagnostic performance
outperformed machine learning methods such as CNNs (76%-
91% accuracy), which specialize in classification without con-
sidering the acquisition of low-dimensional representations and
their interpretability.

Index Terms—ADNI, CBIR, dimensional reduction, 3D brain
MRI

I. INTRODUCTION

Magnetic resonance imaging (MRI) is widely used for
diagnosing neurological disorders since it can capture the
anatomical features of the brain without radiation exposure
[1]. Picture archiving and communication system (PACS)
[2] store MRIs with the associated clinical information and
centralize management of scanned images. In PACS, MRIs are
generally retrieved and registered using specialized keywords
that indicate the anatomical and clinical features of the brain
[3]. However, selecting the specific keywords requires a high
level of expertise and experience. In addition, the human cost
of associating images with specific keywords is extremely
expensive. Therefore, content-based image retrieval (CBIR),
which retrieves MRIs of similar cases from only input images

*Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
As such, the investigators within the ADNI contributed to the de-
sign and implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report. A complete list-
ing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf

without using specific keywords, is desired [4]. The brain
MRIs are high-dimensional data, and it is not possible to
directly calculate similarity using machine learning methods.
Therefore, for practical CBIR realization, it is necessary to
obtain a low-dimensional representation that:

(i) preserves the original information (i.e., data integrity),
(ii) has high disease retrieval capability,
(iii) has high interpretability.

As a first study aimed at realizing this objective, Arai et
al. compressed approximately six million dimensions of brain
MRI to 150 dimensions using 3D convolutional autoencoders
(3D-CAE) [5]. Despite such a large dimensional compression,
their model suppressed the reconstruction error to 8.4% of the
range that the pixel could take. Indicating that it could obtain a
low-dimensional representation that retained detailed structural
information of the brain. However, this method focused only
on (i) data integrity. Onga et al. proposed a dimensional
reduction method called disease-oriented data concentration
with metric learning (DDCML) [6], in which subjects with
the same diagnostic information are embedded closely on
a low-dimensional representation. They added constraints of
metric learning, which has been successful in fields such
as general object recognition [7], to the loss function of
the 3D-CAE. As a result, their method made it possible to
evaluate similarity calculations focusing on diagnostic infor-
mation without an ad-hoc discrimination model. Nishimaki
et al [8]. proposed localized variational autoencoder (Loc-
VAE), a structurally interpretable low-dimensional represen-
tation acquisition method based on VAE [9]. In general, the
VAE is trained so that each dimension of the low-dimensional
representation follows a normal distribution by introducing
KL divergence. Therefore, the independence and continuity of
each dimension are strongly guaranteed compared to CAE. In
addition, Loc-VAE succeeded in obtaining a more structurally
interpretable representation by introducing a new constraint
that each dimension of the low-dimensional representation
retains information about a local region of the input image.
These methods have achieved some success in obtaining
low-dimensional representations for realizing CBIR for brain
MRIs. However, they have not yet achieved all three require-
ments listed above, and further research is needed.

On the other hand, quantitative analysis and theoretical elu-
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Fig. 1. The overview of isometric feature embedding for content-based image retrieval (IE-CBIR).

cidation of machine learning models proceeded actively with
the development of large generative models. The generative
models generally train the probability distribution of the input
dataset, but it is difficult to directly obtain the probability
density function (PDF) Pz(z) (z ∈ Z). Therefore, the VAE
and its advanced model (Gaussian mixture model) [10] have
calculated the probability density function of the latent space
Z. However, the latent space obtained by VAE has no isometric
relationship with the real space [11]–[13]. In other words, the
distance between data points in the real space does not corre-
spond to the distance in the latent space. In such a situation,
a simple estimation of P (z) can not replace the estimation of
the probability density function Px(x) (x ∈ X) in the real
space X . To make interpretable CBIR, it is necessary to embed
into a low-dimensional representation that maintains isometric
with the real space [14]. Kato et al. proposed a rate-distortion
optimization guided autoencoder (RaDOGAGA) that main-
tains isometry between the real space and the latent space
and demonstrated its excellent performancel [15].

In addition, for the realization of the clinical CBIR, it is
important to obtain a low-dimensional representation that can
be clustered by disease features while maintaining isometricity
with real space. Metric learning [16] (or recently called con-
trastive learning), in which data belonging to the same class are
learned to have similar representations, while data belonging
to different classes are learned to have distant representations,
has received particular attention in recent years and is used
in a variety of research areas, from basic to applied. Chen
et al. proposed Baseline++, a general-purpose and effective
machine learning concept that replaces the last linear classifier
or similar small networks used for fine-tuning of arbitrary clas-
sifiers, etc., with distance-based classifiers [17]. Baseline++

allows each discriminative class to be corresponding class
prototype [18] and updates it with training data to obtain a
low-dimensional representation representative of the class. In
addition to achieving significant accuracy gains in a variety of
classification tasks, this method also provides a high degree
of model explainability, since classification is only possible
by the distance to the obtained low-dimensional representation.
By training distance-based classifiers, clusters are formed and,
variation within classes is explicitly reduced, and excellent
performance is achieved in many recognition tasks [19], [20].

In this study, we propose isometric feature embedding for
content-based image retrieval (IE-CBIR), which is a new low-
dimensional representation acquisition framework. Our IE-
CBIR generates a low-dimensional representation that simul-
taneously satisfies the above three important requirements for
realizing CBIR for brain MRIs. The IE-CBIR is based on the
ideas of RaDOAGA [15], a method of latent space acquisition
that guarantees isometry between real and latent space, and
Baseline++ [17], which allows classification on the distance of
the low-dimensional representation itself. This achieves both
high preservation of information on changes in brain shape
related to diseases and the explanatory power of measuring
similarity directly on the low-dimensional representations.
Our proposed IE-CBIR simultaneously achieves conservation,
explainability that allows direct similarity measurement in a
low-dimensional representation, and continuity.

II. IE-CBIR

Our IE-CBIR is an effective and generic method for obtain-
ing low-dimentional representation of the clinical CBIR. Fig.
1 shows an overview of the IE-CBIR. The IE-CBIR consists of
the Isometric embedding block (upper part in Fig. 1) based on



the RaDOGAGA and the Metric learning block (lower part in
Fig. 1) based on the Baseline++. By integrating two blocks, the
IE-CBIR acquires a low-dimensional representation z ∈ RD
that guarantees the isotonicity of the original data with the real
space and allows data exploration using itself. In other words,
we can obtain a low-dimensional representation z that directly
calculates the distance between diseases in the latent space.

A. Isometric embedding block

The Isometric embedding block is based on the RaDO-
GAGA, a machine learning method that aims to efficiently
compress input information and achieve low distortion. The
RaDOGAGA is an encoder-decoder type unsupervised learn-
ing model similar to the VAE. High bit rate is realized by
constraints that shorten the average coding length of z in the
generated representation, i.e., the entropy of the distribution
of z is reduced, and low data distortion is a model realized by
making each dimension real space and latent space isometric,
which was not considered in the VAE. Let fθ(x), gϕ(z), and
Pz,ψ(z) be the parametric encoder, decoder, and the PDF of
the latent variable with parameters θ, ϕ, and ψ. D( · , · ) is the
general reconstruction loss, and in this paper we used the root
mean squared error (RMSE). The loss function for this block
consists of three components as in the original paper [15].

First, R = − log(Pz,ψ(z)) is the loss for higher bitrates
in the model defined by the RaDOGAGA and is defined
assuming a code length of z. The probability model for z here
can be chosen arbitrarily, and we assumed the same normal
distribution as in the original paper. Second, D(x, x̂) is the
reconstruction error. Third, D(x̂, x̆) is the difference between
the reconstruction from z and the reconstruction from z + ϵ
(∈ RD). ϵ is a uniform noise with mean 0 and variance σ2.

B. Metric learning Block

The Metric learning block cooperates with the previous
block to update the low-dimensional representation z to a
representation in which CBIR can only be realized by per-
forming a neighborhood search on it. Specifically, based on the
Baseline++ approach, the prototype pi ∈ RD (colored vectors
in Fig.1) corresponding to each disease i that has the same
dimensionality as z is updated by the metric learning based
on cosine similarity to obtain more appropriate representation.
The loss in this block is obtained by the cross-entropy loss
C with the similarity score obtained by the cosine similarity
between the representation z of each case and the prototype
pi. The inference is based on the distance between the low-
dimensional representation and the prototype of each class.
This framework, which allows class estimation based on
neighborhood search alone, is very important in the CBIR and
is the main reason why we focused on this method.

However, the Baseline++ is designed to replace the fully
connected layer at the back end of the model. That is, it
assumes that its low-dimensional representation z is acquired
based on supervised learning and contains strong class infor-
mation inside the representation (i.e., typically a representation

TABLE I
NUMBER OF CASES PER DATASET

# cases # patients

CN AD CN AD

Train 1,844 1,003 265 192
Test 523 187 72 44

Total 2,367 1,190 337 236

of the penultimate layer of the model). In addition, the low-
dimensional representation z obtained in our previous block
is a representation obtained by unsupervised learning, so the
expected results cannot be obtained by using Baseline++ as is.
Therefore, unlike the original Baseline++, IE-CBIR updates
not only the prototype pi, but also the low-dimensional
representation z, by simultaneously learning the encoder of
the isometric embedding block using the gradient information
of the cross-entropy loss C.

C. Entire objective of IE-CBIR
The coordination of these two blocks allows the IE-CBIR

to efficiently compress the original information while achiev-
ing a low-distortion and highly explainable low-dimensional
representation that can directly measure similarity in a low-
dimensional representation. The overall loss L for IE-CBIR to
obtain a low-dimensional representation z is

L = R+ λ1D(x, x̂) + λ2D(x̂, x̆) + λ3C. (1)

Here, λ1, λ2, and λ3 are loss coefficients.

III. EXPERIMENT

A. Datasets and preproccessing
The performance of our IE-CBIR was evaluated using

data from the publicly available ADNI21 dataset labeled
Alzheimer’s disease (AD) and Cognitive normal (CN). Table
I shows a breakdown of the data used in this experiment.
The images of the same subjects were not included in model
training and evaluation. This was to prevent bias caused by
mixing similar data into training and validation fold.

The N4 bias field correction [21] was applied to all images
for correcting intensity non-uniformity. In addition, all images
were skull-stripped using a deep learning-based method [22].
To fix the brain position, each brain was transformed in MNI
space (standard reference space for brain MRI) using only
rotation and translation (i.e., the size of the brain remains the
same). The matrix size was then unified to 80× 112× 80 and
the resolution to 2mm× 2mm× 2mm by zero padding and
bi-linear interpolation. The MRIs often have different intensity
distributions and contrasts depending on the protocol or opera-
tor used during the scan. Therefore, the intensity normalization
was performed. Specifically, the standard deviation σ of the
intensity was calculated for each case, and negative values and
values greater than 4σ were replaced by 0 and 4σ, respectively.
Then, we scaled the data to the range of [0, 1].

1https://adni.loni.usc.edu



TABLE II
DETAILED ARCHITECTURE OF THE IE-CBIR †

Encoder Act. Output shape
Input image - 1× 80× 112× 80

Conv block

[
3× 3× 3, 32

3× 3× 3, 32

]
32× 80× 112× 80

Avg pool - 32× 40× 56× 40

Conv block

[
3× 3× 3, 32

3× 3× 3, 64

]
64× 40× 56× 40

Avg pool - 64× 20× 28× 20

Conv block

[
3× 3× 3, 64

3× 3× 3, 128

]
128× 20× 28× 20

Avg pool - 128× 10× 14× 20

Conv block
[
3× 3× 3, 128

]
128× 10× 14× 10

Res block
[
3× 3× 3, 128

]
128× 10× 14× 10

Conv 3× 3× 3, 128 1× 10× 14× 10

latent z - 1, 400× 1× 1× 1

Decoder Act. Output shape
latent z - 1× 10× 14× 10

Conv block
[
3× 3× 3, 128

]
128× 10× 14× 10

Res block
[
3× 3× 3, 128

]
128× 10× 14× 10

Conv block
[
3× 3× 3, 128

]
128× 10× 14× 10

Upsample - 128× 20× 28× 20

Conv block

[
3× 3× 3, 128

3× 3× 3, 64

]
64× 20× 28× 20

Upsample - 64× 40× 56× 40

Conv block

[
3× 3× 3, 64

3× 3× 3, 32

]
64× 40× 56× 40

Upsample - 32× 80× 112× 80

Conv block
[
3× 3× 3, 32

]
32× 80× 112× 80

Conv 3× 3× 3, 1 1× 80× 112× 80

ReLU - 1× 80× 112× 80

† All the models used in this experiment for comparison (CAE, VAE,
RaDOGAGA, DDCML) have this configuration.

B. Configuration of IE-CBIR

The IE-CBIR is composed of an encoder and a decoder,
each of which consists of a 10-layer CNN, similar to the
conventional CAE, VAE, and RaDOGAGA. The specific
configuration of the IE-CBIR is shown in Table II. In this
experiment, the size of the input and output of these models
(i.e., reconstruction) are 80×112×80 as described above and
the dimension of the low-dimensional representation z, was set
to 1,400 (i.e., D = 1, 400). The Conv block comprises convo-
lution, batch normalization, and rectified linear unit (ReLU)
activation. The Residual block has a configuration published
in the literature [23], combining multiple convolutions with
skip connections to stabilize training as the number of layers
increases.

C. Evaluation

The effectiveness of the low-dimensional representation
obtained by the proposed IE-CBIR was evaluated in (1) the
reconstruction capability of the original brain, and (2) the data

retrieval capability and its interpretability. The first evalua-
tion corresponds to the requirement (i) for low-dimensional
representation described above, and the latter corresponds to
its (ii) and (iii). The performance of the proposed (E) IE-
CBIR has been compared with (A) 3D-CAE, (B) 3D-VAE,
(C) RaDOGAGA [15] and (D) DDCML [6]. The network
architecture of all models, including the dimensionality of z,
is the same as that of the proposed IE-CBIR, as shown in
Table II.

1) Data integrity (data reconstruction capability): How
well the low-dimensional representation z preserves the in-
formation of the original 3D brain image is evaluated. This
evaluation corresponds to the requirement (i). Root mean
square error (RMSE) and structural similarity (SSIM) were
obtained from the input image x and the reconstructed image
x̂.

2) Data retrieval capability and its interpretability: How
accurately the disease can be estimated from the obtained
low-dimensional representation z is evaluated in terms of the
ability to classify CN and AD classes. We then discuss whether
the estimation process is easy to understand for users. This
evaluation corresponds to the (ii) and (iii) of the requirements.
Since the low-dimensional expressions obtained by the 3D-
CAE, 3D-VAE and RaDOGAGA are obtained by unsupervised
manner, a meaningful search cannot be expected if clustering
is performed as is. Therefore, a logistic regression with L1
regularization model (LR) was separately trained for class
estimation of each model. The DDCML and our IE-CBIR do
not require such an additional learning model because they can
estimate the disease class by the distance to each disease using
the low-dimensional representation itself. For the DDCML,
classes were estimated by K-means algorithm according to the
original paper [6]. For our IE-CBIR, classes were estimated
by nearest neighbor estimation to the class prototype pi. The
macro F1 score was used for this evaluation.

IV. RESULTS

Table III summarizes the performance of each method,
including our proposed IE-CBIR. The proposed IE-CBIR
achieved an extremely high classification performance of 0.888
in macro F1 score and 91.5% in accuracy only by neighbor-
hood search from the generated low-dimensional representa-
tion. Fig. 2 visualizes the distribution of each method’s low-
dimensional representation z with t-SNE [24].

V. DISCUSSION

A. Data integrity: data reconstruction capability

For the reconstruction of brain structures or the preserva-
tion of original data, the best results were obtained for the
representation produced by the 3D-CAE, where the model
is trained with a reconstruction-only loss function. This is
because the model is specialized for reconstruction. Due to the
sophisticated learning algorithm of the RaDOGAGA, which
provides a mapping of the input and output spaces to a
space of guaranteed equidistance, the method RaDOGAGA
and the proposed method IE-CBIR, which applies it, have



TABLE III
THE OVERALL PERFORMANCE OF EACH MODEL

(1) Data reconstruction (2) Data retrieval capability

RMSE SSIM Recall Precision macro F1

A) 3D-CAE 0.0649 0.922 0.690 0.658 0.777
B) 3D-VAE 0.0786 0.880 0.573 0.485 0.607
C) RaDOGAGA [15] 0.0775 0.882 0.599 0.577 0.749
D) DDCML [6] 0.0902 0.836 0.786 0.891 0.874
E) IE-CBIR 0.0758 0.887 0.802 0.867 0.888 ‡

‡ 91.5% in accuracy

CN
AD

(a) CAE

CN
AD

(b) VAE

CN
AD

(c) DDCML

CN
AD

(d) IE-CBIR (proposed)

Fig. 2. Low-dimentional representation visiualized by t-SNE

been able to achieve 3D-CAE-like performance in terms of
data preservation.

Although the DDCML has the great advantage of being
able to perform data exploration from the low-dimensional
representation itself, as described below, the reconstruction
capability were relatively low because metric learning is
applied directly to the low-dimensional representation obtained
by 3D-CAE, which inhibits data reconstruction to some extent.

While preserving the structural information of the original
data is an important aspect of acquiring low-dimensional
representations, it is supposed to note that in the present
evaluation, the high degree of preservation is not directly
related to the disease classification ability. This is because
brain structures contain a large amount of information derived
from individual differences (e.g., wrinkle regions of the brain)
that do not contribute to disease classification. However, this
metric will become significant in the future as the number of
diseases covered increases and the model deals with unlearned

diseases.

B. Data retrieval capability and its interpretability
The IE-CBIR and DDCML have excellent data retrieval

capability (ii) and interpretability (iii), which allows data
retrieval from the obtained low-dimensional representation z
itself using only nearest neighbor search without the need for
ad hoc discriminators. This desirable feature for CBIR can
also be confirmed by the scatter plot of t-SNE in Figure
2. Among them, the IE-CBIR in particular improved the
classification performance of AD and CN by 11.1 points, even
when compared to CAE, which best preserves brain structures.
The final AD and CN classification performance of 0.888 in
macro F1 and 91.5% in accuracy is comparable or better
than the accuracies reported in the literature under proper
evaluation (i.e., without data leakage; 76%-91% accuracy [25])
using machine learning models such as CNNs. It should be
emphasized that they do not take into account the acquisition
of low-dimensional representations and their interpretability.
This may be due to the advantages of the RaDOGAGA, such
as the isometric embedding in the input and output space
and the independence of each dimension, as well as our
original learning method based on Baseline++, where the low-
dimensional representation z and each disease prototype pi are
made close to each other by metric learning.

VI. CONCLUSION

In this paper, we proposed a new framework IE-CBIR for
realizing CBIR of brain MRIs. To realize practical CBIR, it
is necessary to obtain a low-dimensional representation that
has (i) data integrity, (ii) high disease retrieval capability,
and (iii) its interpretability. The experiments have shown that
the IE-CBIR is able to realize these requirements and has
demonstrated superior performance to existing techniques. In
particular, the IE-CBIR’s advantage of being able to retrieve
similar cases only by neighbor search is very useful for
the realization of the CBIR. This not only eliminates the
need for ad hoc machine learning models, but is also a
very important advantage in terms of interpretability of low-
dimensional representations. We plan to validate the IE-CBIR
on a larger scale and with more diverse data in the near future.
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