pre-print(ArXiv) and abstract
・論文 ・国際会議proceeding ・Pre-print(arXiv) and abst ・国内発表&Abstract
・特許 ・著書 ・新聞による紹介
=================
[A13] A Neural Network Approach to Identify Left-Right Orientation of Anatomical Brain MRI, Kei Nishimaki, Hitoshi Iyatomi, and Kenichi Oishi, Feb. 2024, bioRxiv 2024.02.15.580574
[A12] Majority of Minority: Data Imbalance Learning Method for Named Entity Recognition, Sota Nemoto, Shunsuke Kitada, and Hitoshi Iyatomi, Jan. 2024, arXiv preprint arXiv:2401.11431
[abs] A Rapid Deep Learning Approach to Parcellate 280 Anatomical Regions to Cover the Whole Brain, Kei Nishimaki, Kengo Onda, Kunpei Ikuta, Yuto Uchida, Susumu Mori, Hitoshi Iyatomi, and Kenichi Oishi, 2024 ISMRM & ISMRT annual meeting and exhibition, May. 2024
[A11] OpenMAP-T1: A Rapid Deep Learning Approach to Parcellate 280 Anatomical Regions to Cover the Whole Brain, Kei Nishimaki, Kengo Onda, Kunpei Ikuta, Yuto Uchida, Susumu Mori, Hitoshi Iyatomi, and Kenichi Oishi, Jan. 2024 medRxiv 2024.01.18.24301494; doi: https://doi.org/10.1101/2024.01.18.24301494, codes (github)
[A10] Towards Robust Plant Disease Diagnosis with Hard-sample Re-mining Strategy, Quan Huu Cap, Atsushi Fukuda, Satoshi Kagiwada, Hiroyuki Uga, Nobusuke Iwasaki, Hitoshi Iyatomi, Sep. 2023, arXiv preprint arXiv:2309.01903
[A9] Investigation to Answer Three Key Questions Concerning Plant Pest Identification and Development of a Practical Identification Framework, Ryosuke Wayama, Yuki Sasaki, Satoshi Kagiwada, Nobusuke Iwasaki, and Hitoshi Iyatomi, Jul 2023, SSRN pre-print, http://dx.doi.org/10.2139/ssrn.4524872
[A8] A Practical Framework for Unsupervised Structure Preservation Medical Image Enhancement, Quan Huu Cap, Atsushi Fukuda, and Hitoshi Iyatomi, Aug. 2021, arXiv preprint arXiv:2304.01864
[abs] An effective manoeuvre in deep learning techniques to provide multiscale robustness for plant disease diagnosis, Gent Imeraj, Sayo Nishii, Daiki Ito, and Hitoshi Iyatomi,Trends in Nanotechnology2022 (TNT2022), Oct. 2022.
[A7] Gastric Cancer Detection from X-ray Images Using Effective Data Augmentation and Hard Boundary Box Training, Hideaki Okamoto, Takakiyo Nomura, Kazuhito Nabeshima, Jun Hashimoto, and Hitoshi Iyatomi, Aug. 2021, arXiv preprint arXiv:2108.08158
[A6] Disease-oriented image embedding with pseudo-scanner standardization for content-based image retrieval on 3D brain MRI, Hayato Arai, Yuto Onga, Kumpei Ikuta, Hitoshi Iyatomi and Kenichi Oishi, Aug. 2021, arXiv preprint arXiv:2108.06518
[A5] LASSR: Effective Super-Resolution Method for Plant Disease Diagnosis, Quan Huu Cap, Hiroki Tani, Hiroyuki Uga, Satoshi Kagiwada, and Hitoshi Iyatomi, Oct. 2020, arXiv preprint arXiv:2010.06499
[A4] Attention Meets Perturbations: Robust and Interpretable Attention with Adversarial Training, Shunsuke Kitada and Hitoshi Iyatomi, Sept. 2020, arXiv preprint arXiv:2009.12064
[A3] LeafGAN: An Effective Data Augmentation Method for Practical Plant Disease Diagnosis, Quan Huu Cap, Hiroyuki Uga, Satoshi Kagiwada and Hitoshi Iyatomi, Feb. 2020, arXiv preprint arXiv:2002.10100
[A2] End-to-End Text Classification via Image-based Embedding using Character-level Networks, Shunsuke Kitada, Ryunosuke Kotani and Hitoshi Iyatomi, arXiv preprint arXiv:1810.03595
[A1] Skin lesion classification with ensemble of squeeze-and-excitation networks and semi-supervised learning, Shunsuke Kitada and Hitoshi Iyatomi, arXiv preprint arXiv:1809.02568